q-binomial
对着 zaky 抄写一下...这里用极限定义大概只是为了 \(q=1\) 时的特殊情况,就是二项式系数。后面都用 \(q\) 表示无限趋近于 \(q\) 了。
定义:
对称,展开,吸收,帕斯卡恒等式。
(下面是需要额外记忆的)代入 \(m\gets n-m\) 有帕斯卡恒等式第二个形式(自己编的名字):
考虑 \(m\times (n-m)\) 这个平面,相当于每次可以往右走或者往上走,每次往右走还要乘上 \(q\) 的《当且列下方格子》次方。所以得到 \({n\brack m}_q\) 的一个组合意义就是 \((0,0)\) 走到 \((n-m,m)\) 每步只能向右或向上,所有路径中,\(q^{\text{折线右下方格子数}}\) 之和。
二项式定理:
证明直接对 \(n\) 归纳即可。这给出了生成函数的形式 \(q^{\binom{m}{2}}{n\brack m}_q=[x^m]\prod_{i=0}^{n-1}(1+q^iz)\),这给出了 \({n\brack m}_q\) 的另一个组合意义是,对于 \(1\sim n\) 的选出大小为 \(m\) 的集合 \(S\),\({n\brack m}_q=\sum\limits_{|S|=m}\prod\limits_{i\in S}q^{i\text{ 前面有多少个没被选}}\)。
上指标求和:\({n + m + 1 \brack n + 1}_q = \sum\limits_{i=0}^m q^i {n + i \brack n}_q\),不断运用帕斯卡恒等式第二个形式。
范德蒙德卷积:\({n + m \brack k}_q = \sum\limits_{i=0}^k q^{(n-i)(k-i)} {n \brack i}_q {m \brack k-i}_q\),考虑运用第二个组合意义,后半部分选出的 \((k-i)\) 每个都要补充乘上 \(q^{n-i}\)。