「题解」洛谷 P6054 [RC-02] 开门大吉
一套题里面的各个题是假的,可以处理出 \(w_{i,j}\) 为第 \(i\) 个人选第 \(j\) 套题的期望得分。
对于每个人来讲,有 \(m\) 种选择套题,只能选择一个套题,要求价值最小,于是想到一个最小割的经典建图:对于每个人,从 \(S\) 到 \(T\) 连一条长度为 \(m\) 的链,边的流量依次为这个人选择第 \(i\) 套题的期望得分。
考虑怎样描述限制,若割了 \(j\) 的第 \(l\) 条边,那么就不能割 \(i\) 的前 \((j+k-1)\) 条边。
那么就从 \(j\) 的第 \(l\) 条边的起点,向 \(i\) 的前 \((j+k-1)\) 条边的终点连一条 \(+\infty\).
但是要注意到,限制和限制之间是有传递性的,假若有 \(1\) 比 \(2\) 大 \(1\),\(2\) 比 \(3\) 大 \(1\),那么还需要满足 \(1\) 比 \(3\) 大 \(2\).
将一开始 \(S\) 到 \(T\) 的若干条长度为 \(m\) 的链,连一条反向的流量为 \(+\infty\) 的边,这样限制和限制组成的限制也被满足了。
最小割 建图模型:每个位置 \(n\) 选 \(1\),求最小代价,\(S\) 到 \(T\) 连若干条长度为 \(n\),流量依次为每种选择的代价,求最小割。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#define pb emplace_back
#define mp std::make_pair
#define fi first
#define se second
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef std::pair<int, int> pii;
typedef std::vector<int> vi;
const ll mod = 998244353;
ll Add(ll x, ll y) { return (x+y>=mod) ? (x+y-mod) : (x+y); }
ll Mul(ll x, ll y) { return x * y % mod; }
ll Mod(ll x) { return x < 0 ? (x + mod) : (x >= mod ? (x-mod) : x); }
ll cadd(ll &x, ll y) { return x = (x+y>=mod) ? (x+y-mod) : (x+y); }
ll cmul(ll &x, ll y) { return x = x * y % mod; }
template <typename T> T Max(T x, T y) { return x > y ? x : y; }
template<typename T, typename... T2> T Max(T x, T2 ...y) { return Max(x, y...); }
template <typename T> T Min(T x, T y) { return x < y ? x : y; }
template<typename T, typename... T2> T Min(T x, T2 ...y) { return Min(x, y...); }
template <typename T> T cmax(T &x, T y) { return x = x > y ? x : y; }
template <typename T> T cmin(T &x, T y) { return x = x < y ? x : y; }
template <typename T>
T &read(T &r) {
r = 0; bool w = 0; char ch = getchar();
while(ch < '0' || ch > '9') w = ch == '-' ? 1 : 0, ch = getchar();
while(ch >= '0' && ch <= '9') r = r * 10 + (ch ^ 48), ch = getchar();
return r = w ? -r : r;
}
template<typename T1, typename... T2>
void read(T1 &x, T2& ...y) { read(x); read(y...); }
const int N = 100010;
const int M = 500010;
const ll INF = 0x7fffffffffffffff;
const ld eps = 1e-10;
int n, m, p, y, c[N], pos[81][81];
ld f[81][81][81], w[81][81];
int tot, S, T, ent = 1, head[N], cur[N], dis[N];
struct Edge {
int to, nxt;
ld fl;
}e[M];
inline void add(int x, int y, ld z) {
e[++ent].to = y; e[ent].fl = z; e[ent].nxt = head[x]; head[x] = ent;
e[++ent].to = x; e[ent].fl = 0; e[ent].nxt = head[y]; head[y] = ent;
}
bool bfs() {
for(int i = 1; i <= tot; ++i) dis[i] = -1, cur[i] = head[i];
std::queue<int>q;
q.push(S); dis[S] = 0;
while(!q.empty()) {
int x = q.front(); q.pop();
for(int i = head[x]; i; i = e[i].nxt) {
int v = e[i].to;
if(dis[v] == -1 && e[i].fl > eps) {
dis[v] = dis[x] + 1;
q.push(v);
}
}
}
return dis[T] != -1;
}
bool qwqbfs() {
for(int i = 1; i <= tot; ++i) dis[i] = -1;
std::queue<int>q;
q.push(S); dis[S] = 0;
while(!q.empty()) {
int x = q.front(); q.pop();
for(int i = head[x]; i; i = e[i].nxt) {
int v = e[i].to;
if(dis[v] == -1 && e[i].fl == INF) {
dis[v] = dis[x] + 1;
q.push(v);
}
}
}
return dis[T] != -1;
}
ld dfs(int x, ld lim) {
if(x == T) return lim;
ld flow = 0;
for(int i = cur[x]; i && flow < lim; i = e[i].nxt) {
int v = e[i].to; cur[x] = i;
if(dis[v] == dis[x] + 1 && e[i].fl > eps) {
ld f = dfs(v, Min(e[i].fl, lim - flow));
flow += f; e[i].fl -= f; e[i^1].fl += f;
}
}
return flow;
}
ld dinic() {
ld mxfl = 0;
while(bfs())
mxfl += dfs(S, INF);
return mxfl;
}
void solve() { for(int i = 1; i <= tot; ++i) head[i] = 0; tot = 0; ent = 1;
read(n, m, p, y);
for(int i = 1; i <= p; ++i) read(c[i]);
for(int j = 1; j <= m; ++j)
for(int i = 1; i <= n; ++i)
for(int k = 1; k <= p; ++k) {
double qwq; scanf("%lf", &qwq);
f[i][j][k] = qwq;
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) {
ld t = 1; w[i][j] = 0;
for(int k = 1; k <= p; ++k) {
t *= f[i][j][k];
w[i][j] += t * c[k];
}
}
S = ++tot; T = ++tot;
for(int i = 1; i <= n; ++i) {
pos[i][0] = S;
for(int j = 1; j <= m; ++j) {
if(j < m) pos[i][j] = ++tot;
else pos[i][j] = T;
add(pos[i][j-1], pos[i][j], w[i][j]);
add(pos[i][j], pos[i][j-1], INF);
}
}
for(int o = 1; o <= y; ++o) {
int i, j, k; read(i, j, k);
for(int a = 1; a <= m; ++a)
if(a-1+k >= 1 && a-1+k <= m)
add(pos[j][a-1], pos[i][a-1+k], INF);
}
if(qwqbfs()) {
puts("-1");
return ;
}
double qwq = dinic();
printf("%lf\n", qwq);
}
signed main() {
int T; read(T);
while(T--)
solve();
return 0;
}