2024.05.28
function [x,val,k]=grad(fun,gfun,x0)
% 功能: 用最速下降法求解无约束问题: min f(x)
%输入: x0是初始点, fun, gfun分别是目标函数和梯度
%输出: x, val分别是近似最优点和最优值, k是迭代次数.
maxk=5000; %最大迭代次数
rho=0.5;sigma=0.4;
k=0; epsilon=1e-6;
while(k<maxk)
g=feval(gfun,x0); %计算梯度
d=-g; %计算搜索方向
if(norm(d)<epsilon), break; end
m=0; mk=0;
while(m<20) %Armijo搜索
if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d)
mk=m; break;
end
m=m+1;
end
x0=x0+rho^mk*d;
k=k+1;
end
x=x0;
val=feval(fun,x0);
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)