基本术语

要进行机器学习,先要有数据记录
这组记录的集合称为一个"数据集“

每条记录是关于一个事件或对象的描述  称为"示例" (instance) 或"样本" (samp1e).  (色泽=浅自;根蒂t硬挺;敲声=清脆)

反映事件或对象在某方面的表现或性质的事项(例如"色泽""根蒂" "敲声") 称为 属性 或"特征" (feature); 属性值(乌黑)

属性张成的空间称为"属性空间" (attribute space) 、"样本空间" (samp1e space)或"输入空间"

从数据中学得模型的过程称为"学习" (le缸ning)或"训练" (training)

训练过程中使用的数据称为"训练数据" (training data) ,其中每个样本称为一个训练样本" (training samp1e),

训练样本组成的集合称为"训练集" (training set). 

例如"好瓜",称为"标
记" (labe1); 拥有了标记信息的示例,则称为"样例" (examp1e).

例如"好瓜" "坏瓜",此类学习任务称为
"分类" (classification); 若欲预测的是连续值?例如西瓜成熟度0.95 、0.37 ,
此类学习任务称为"回归" (regression).

学得模型后,使用其进行预测的过程称为"测试" (testing) ,被预测的样本
称为测试样本" (testing sample). 

根据训练数据是否拥有标记信息,学习任务可大致划分为两大类"监督学习"和学习" (supervised learning) 和"无监督学习" (unsupervised learning) ,分类和回归是前者的代表,而聚类则是后者的代表.

 

posted @   一只竹节虫  阅读(318)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
点击右上角即可分享
微信分享提示