发那个太丢人

导航

 

1)介绍

我们用SRAdb library来对SRA数据进行处理。 SRAdb 可以更方便更快的接入  metadata associated with submission, 包括study, sample, experiment, and run. SRAdb 包通过 NCBI SRA数据库中的metadata信息 作用. 首先dbConnect ()接入 R system 中的local database systems, 所有的搜索就在本地文件的基础上进行。
the queries we tried with the dbGetQuery function are passed in the form of SQL queries, which is a Select From Where framework. This part actually requires the
RSQLite package, which is installed when installing the SRAdb package, as a dependency. The getSRA function can actually do a full text search in the SRA data again via RSQLite  and fetch the data in the selected fields for the query.

2)下载

source("http://bioconductor.org/biocLite.R")
biocLite("SRAdb")
library(SRAdb)

 3)了解SRA database

#sqlFile <- getSRAdbFile()  #在线获取,太大了,不要这样做。
sraCon <- dbConnect(SQLite(), 'SRAmetadb.sqlite') #于是我下载了这个文件,压缩文件2个G(解压后36个G),然后读取了这个文件,相当于下载nr库到本地。 sraTables <- dbListTables(sraCon) # investigate the content of the database dbListFields(sraCon,"study") #########关键词keyword: embryo myHit <- dbGetQuery(sraCon, paste("select study_accession,study_title from study where","study_description like'%embryo'",sep=" ")) # myHit <- getSRA( search_terms = "brain", out_types = c('run','study'), sraCon) #free text收索 myHit <- getSRA( search_terms ='Alzheimers OR "EPILEPSY"', out_types = c('sample'), sraCon) #逻辑收索

 

4)从SRA database下载数据

myHit <- getSRA( search_terms ='ALZHEIMERS OR "EPILEPSY"', out_types = c('sample'), sraCon)   #关键词收索
conversion <- sraConvert( c('ERS354366','SRS266589'), sra_con = sraCon)          #选择其中的2个,查看信息
conversion
rs <- getSRAinfo( c("SRX100465"), sraCon, sraType = "sra")  #选择其中一个看相应的信息,会显示出ftp地址
getSRAfile( c("SRR351672", "SRR351673"), sraCon, fileType='fastq')  ##下载感兴趣的run

5)下载完fq文件后,用R进行读取

install.packages("R.utils")
library(R.utils)  #下载数据用
download.file(url="ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA000/SRA000241/SRX000122/SRR000648.fastq.bz2", destfile = "SRR000648.fastq.bz2")
bunzip2(list.files(pattern = ".fastq.bz2$")) #解压
biocLite("ShortRead")             
library(ShortRead)               #读取fq文件
MyFastq <- readFastq(getwd(), pattern=".fastq")  #小心运行,要至少8G内存
readLines("SRR000648.fastq", 4)    # first four lines of the file

 6)下载并读取比对数据(bam)

download.file(url="http://genome.ucsc.edu/goldenPath/help/examples/bamExample.bam", destfile = "bamExample.bam")
library(Rsamtools)
bam <- scanBam("bamExample.bam")    #读取bam
names(bam[[1]])                  #查看bam的信息
countBam("bamExample.bam")      #统计bam信息

what <- c("rname", "strand", "pos", "qwidth", "seq")  #只读取其中的几列
param <- ScanBamParam(what=what)         
bam2 <- scanBam("bamExample.bam", param=param)  
names(bam2[[1]])
bam_df <- do.call("DataFrame", bam[[1]])  # Read the data as a DataFrame object
head(bam_df)

table(bam_df$rname == '21' & bam_df$flag == 16) #提取符合指定要求的sequences,即flag=16为reverse strands

 

7)对原始raw NGS data 的预处理

prefetch SRR000648
prefetch SRR000657
fastq-dump  --split-3 -O ./ SRR000657
fastq-dump --split-3 -O ./ SRR000648
library(ShortRead)
myFiles <- list.files(getwd(), "fastq", full=TRUE)
myFQ <- lapply(myFiles, readFastq)
myQual <- FastqQuality(quality(quality(myFQ[[1]])))   #读取质量
readM <- as(myQual, "matrix")      #将质控转化为矩阵
boxplot(data.frame(readM), outline = FALSE, main="Per Cycle Read Quality", xlab="Cycle", ylab="Phred Quality")  #画箱型图

 

 

posted on 2018-09-21 17:05  发那个太丢人  阅读(3276)  评论(0编辑  收藏  举报