uboot的驱动模型理解
uboot的驱动模型,简称dm, 具体细节建议参考./doc/driver-model/README.txt
关于dm的三个概念:
uclass:一组同类型的devices,uclass为同一个group的device,提供一个相同的接口。比如:I2C、GPIO等
driver:上层的接口,英文原文解释是“some code which talks to a peripheral and presents a higher-level
interface to it.”
device:driver的一个实例,绑定到一个具体的端口或者外设。(driver和device是不是可以类比于程序与进程,进程是程序的一个实例)
每一类uclass,需要在代码中用下面的方式来定义,以spi-uclass为例:
UCLASS_DRIVER(spi) = { .id = UCLASS_SPI, .name = "spi", .flags = DM_UC_FLAG_SEQ_ALIAS, .post_bind = spi_post_bind, .post_probe = spi_post_probe, .child_pre_probe = spi_child_pre_probe, .per_device_auto_alloc_size = sizeof(struct dm_spi_bus), .per_child_auto_alloc_size = sizeof(struct spi_slave), .per_child_platdata_auto_alloc_size = sizeof(struct dm_spi_slave_platdata), .child_post_bind = spi_child_post_bind, };
通过对宏定义UCLASS_DRIVER的展开
/* Declare a new uclass_driver */ #define UCLASS_DRIVER(__name) \ ll_entry_declare(struct uclass_driver, __name, uclass) #define ll_entry_declare(_type, _name, _list) \ _type _u_boot_list_2_##_list##_2_##_name __aligned(4) \ __attribute__((unused, \ section(".u_boot_list_2_"#_list"_2_"#_name)))
这样我们就能得到一个结构体, struct uclass_driver _u_boot_list_2_uclass_2_spi
并且存在 .u_boot_list_2_uclass_2_spi段。
但是我们如何通过ID UCLASS_SPI来找到对应的uclass结构体呢?
struct uclass_driver *lists_uclass_lookup(enum uclass_id id) { // 会根据.u_boot_list_2_uclass_1的段地址来得到uclass_driver table的地址 struct uclass_driver *uclass = ll_entry_start(struct uclass_driver, uclass); // 获得uclass_driver table的长度 const int n_ents = ll_entry_count(struct uclass_driver, uclass); struct uclass_driver *entry; for (entry = uclass; entry != uclass + n_ents; entry++) { if (entry->id == id) return entry; } return NULL; }
可以通过函数lists_uclass_lookup(enum uclass_id id)来查找。
另外,driver也是类似
/* Declare a new U-Boot driver */ #define U_BOOT_DRIVER(__name) \ ll_entry_declare(struct driver, __name, driver) #define ll_entry_declare(_type, _name, _list) \ _type _u_boot_list_2_##_list##_2_##_name __aligned(4) \ __attribute__((unused, \ section(".u_boot_list_2_"#_list"_2_"#_name))) U_BOOT_DRIVER(tegra114_spi) = { .name = "tegra114_spi", .id = UCLASS_SPI, .of_match = tegra114_spi_ids, .ops = &tegra114_spi_ops, .ofdata_to_platdata = tegra114_spi_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata), .priv_auto_alloc_size = sizeof(struct tegra114_spi_priv), .probe = tegra114_spi_probe, };
这样我们就能得到一个结构体,
ll_entry_declare(struct driver, tegra114_spi, driver) struct driver _u_boot_list_2_driver_2_tegra114_spi __aligned(4) \ __attribute__((unused, \ section(".u_boot_list_2_driver_2_tegra114_spi")))
存储在段,.u_boot_list_2_driver_2_tegra114_spi
但是这些段,在uboot实际加载的时候,又是如何加载到链表中去的呢!
首先,还是初始化列表init_sequence_f里的函数initf_dm
static int initf_dm(void) { #if defined(CONFIG_DM) && defined(CONFIG_SYS_MALLOC_F_LEN) int ret; ret = dm_init_and_scan(true); if (ret) return ret; #endif #ifdef CONFIG_TIMER_EARLY ret = dm_timer_init(); if (ret) return ret; #endif return 0; }
dm_init_and_scan(),代码分析如下
int dm_init_and_scan(bool pre_reloc_only) { int ret; /*创建udevice和uclass空链表,创建根设备(root device)*/ ret = dm_init(); if (ret) { debug("dm_init() failed: %d\n", ret); return ret; } /*扫描U_BOOT_DEVICE定义的设备,与U_BOOT_DRIVER定义的driver进行查找,并绑定相应driver*/ ret = dm_scan_platdata(pre_reloc_only); if (ret) { debug("dm_scan_platdata() failed: %d\n", ret); return ret; } if (CONFIG_IS_ENABLED(OF_CONTROL)) { /*扫描由FDT设备树文件定义的设备,与U_BOOT_DRIVER定义的driver进行查找,并绑定相应driver*/ ret = dm_scan_fdt(gd->fdt_blob, pre_reloc_only); if (ret) { debug("dm_scan_fdt() failed: %d\n", ret); return ret; } } ret = dm_scan_other(pre_reloc_only); if (ret) return ret; return 0; }
分三个部分:
dm_init():创建udevice和uclass空链表,创建根设备(root device)
dm_scan_platdata():调用函数lists_bind_drivers,扫描U_BOOT_DEVICE定义的设备,与U_BOOT_DRIVER定义的driver进行查找,创建udevice,并绑定相应driver。
dm_scan_fdt():扫描由FDT设备树文件定义的设备,与U_BOOT_DRIVER定义的driver进行查找,创建udevice,并绑定相应driver。
int lists_bind_drivers(struct udevice *parent, bool pre_reloc_only) { /*从分段,.u_boot_list_2_driver_info中来查找*/ struct driver_info *info = ll_entry_start(struct driver_info, driver_info); const int n_ents = ll_entry_count(struct driver_info, driver_info); struct driver_info *entry; struct udevice *dev; int result = 0; int ret; for (entry = info; entry != info + n_ents; entry++) { /*将driver_info列表里面的name,依次与driver列表里面的名字,进行匹配查找,然后进行绑定*/ ret = device_bind_by_name(parent, pre_reloc_only, entry, &dev); if (ret && ret != -EPERM) { dm_warn("No match for driver '%s'\n", entry->name); if (!result || ret != -ENOENT) result = ret; } } return result; } int device_bind_by_name(struct udevice *parent, bool pre_reloc_only, const struct driver_info *info, struct udevice **devp) { struct driver *drv; /*从driver list中查找info的名字*/ drv = lists_driver_lookup_name(info->name); if (!drv) return -ENOENT; if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC)) return -EPERM; /*创建udevice,绑定*/ return device_bind(parent, drv, info->name, (void *)info->platdata, -1, devp); }
U_BOOT_DEVICE的宏定义,注意与U_BOOT_DRIVER的区别:
#define U_BOOT_DEVICE(__name) \ ll_entry_declare(struct driver_info, __name, driver_info)