ARIMA模型 - [SPSS & Python]

  简介:

  ARIMA模型:(英语:Autoregressive Integrated Moving Average model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。

  由于毕业论文要涉及到时间序列的数据(商品的销量)进行建模与分析,主要是对时间序列的数据进行预测,在对数据进行简单的散点图观察时,发现数据具有季节性,也就是说:数据波动呈现着周期性,并且前面的数据会对后面的数据产生影响,这也符合商品的销量随时间波动的影响。于是选择了ARIMA模型,那为什么不选择AR模型、MA模型、ARMA模型???

  于是,通过这篇博客,你将学到:

  (1)通过SPSS操作ARIMA模型

  (2)运用python进行白噪声数据判断

  (3)为什么差分,怎么定阶

  PS:在博客结尾,会附录上Python进行ARIMA模型求解的代码。

  为什么会使用SPSS?

  由于真香定理,在SPSS里有ARIMA、AR、MA模型的各种操作;还包括异常值处理,差分,白噪声数据判断,以及定阶。 一种很方便又不用编程还可以避免改代码是不是很爽…

  ARIMA模型的步骤

  好啦,使用ARIMA模型的原因:

  在过去的数据对今天的数据具有一定的影响,如果过去的数据没有对如今的数据有影响时,不适合运用ARIMA模型进行时间序列的预测。

  使用ARIMA进行建模的步骤:

  简单来说,运用ARIMA模型进行建模时,主要的步骤可以分成以下三步:

  (1)获取原始数据,进行数据预处理。(缺失值填补、异常值替换)

  (2)对预处理后的数据进行平稳性判断。如果不是平稳的数据,则要对数据进行差分运算。

  (3)将平稳的数据进行白噪声检验;如果不是白噪声数据,则说明数据之间仍然有关联,需要进行ARIMA(p,d,q)重新定阶:p、q。

  (4)当最后检验的数据是白噪声数据,模型结束。

  接下来,就是用SPSS与Python进行实操。

  1 原始数据预处理

  首先数据来源是:2019年华中赛数学建模B题的数据。通过对一部分数据进行筛选后得到了可以运用模型建立的数据。如下图所示:

  当然我们在拿到新的数据后,需要对数据进行缺失值填补,以及异常值判断。这里不再展示预处理的相关操作。下面有对应的操作链接:

  缺失值填补:https://jingyan.baidu.com/article/d8072ac456536bec95cefdb6.html

  异常值处理:https://wenku.baidu.com/view/bd0289ca6d85ec3a87c24028915f804d2b1687aa.html?fr=search

  2 平稳性检验

  在获取了预处理后的数据后,我们就可以进行下一步平稳性检验;简单来说,平稳性也就是时间序列的数据是不是在某一数据上下波动,转化成数学术语就是:均值和反差不会随着时间变化而变化。于是可以使用SPSS画出数据的散点图,然后通过散点图的图像显示来判断是否是平稳性数据,如果不是平稳的数据就需要进行差分。

  观察图像可以看出,原始数据是有很弱的季节性,但是数据是非平稳的。从2018年12月份,商品号SS73210销量就明显下降,而不是在某一确定值上下波动。于是,对数据使用一阶差分。

  为什么差分? 处理非平稳的数据,消除其相关性使其变成平稳性数据。

  差分后的数据为:

  同时,在我们获取了相应的平稳的数据后,要进行白噪声检验。

  下面是获取差分后的数据值,然后与运用Python进行运算。

  最终,获取一阶差分后的数据:SS73210_1

  3 白噪声检验

  获取了差分后的数据SS73210_1后,运用Python进行白噪声检验,要进行白噪声检验的目的:检验围绕某一条线上下波动的时间序列数据是不是随机上下波动的。

  (白噪声数据:随机数据,Sig>0.05,则是白噪声序列,则历史的数据不能对未来进行预测和推断,及残差的ACF在置信区间内,可以认为等于0,过去的数据影响到今日的数据的这部分数据,这份信息已经被这个模型给提取出来了。)

  接下来就是运用Python进行对序列的白噪声判断:

  '''

  1.实现一阶差分的白噪声数据的判断

  '''

  import pandas as pd

  from statsmodels.stats.diagnostic import acorr_ljungbox as lb

  path = 'D:/Python/Python_learning/HBUT/预处理/ARIMA.xlsx'

  df1 = pd.read_excel(path)

  p_value = lb(df1, lags= 1)

  print('白噪声检验p值:', p_value)

  检验结果:

  白噪声检验p值: (array([28.53145736]), array([9.21884666e-08])

  结果分析:原假设为数据是白噪声的数据,由于模型检验的p值为9.21884666e-08小于0.05,为小概率事件,认为原假设成立不是白噪声数据。所以需要运用ARIMA模型进行重新定阶。

  4 重新定阶

  ARIMA模型的定阶有两个参数p,q,一般可以通过具体的自相关,偏相关图的截尾来确定阶数,这里使用SPSS的操作进行自己定阶,然后通过显著性sig参数来判断模型定阶后的参数是够可靠。

  1:这里有SPSS自动的操作:“专家建模器”

  2 :也可以通过方法 “ARIMA模型” 进行自定义参数p,d,q的阶数。

  我这里选择的模型的参数p,d,q都为1,也就是进行一阶差分,p(自回归项数)与q(滑动平均项数)都为1。

  下面是使用了上面的模型后的模型结果:

  从图像可以看出运用了ARIMA模型(1,1,1)后,显著性为0.135是大于0.05,认为此模型的数据为白噪声的数据,也就是说,过去的数据影响到今日的数据的这部分数据,这份信息已经被这个模型给提取出来了。

  再通过残差ACF与残差PACF也是用来看相关性,如果大部分的数据是处于两条线之间的,说明之间的数据是弱相关,几乎没有什么相关性,影响程度的信息已经被提取了。

  PS:编写Python,进行参数定阶

  '''

  #相对最优模型(p,q)

  data_ = data_.astype(float) #销量转为float类型

  #定阶

  pmax = int(len(D_data)/30) #一般阶数不超过length/10

  qmax = int(len(D_data)/30) #一般阶数不超过length/10

  bic_matrix = [] #bic矩阵

  for p in range(pmax+1):

  tmp = []

  for q in range(qmax+1):

  try: #存在部分报错,所以用try来跳过报错。

  tmp.append(ARIMA(data_, (p, 1, q)).fit().bic)

  except:

  tmp.append(None)

  bic_matrix.append(tmp)

  bic_matrix = pd.DataFrame(bic_matrix) #从中可以找出最小值

  p, q = bic_matrix.stack().idxmin() #先用stack展平,然后用idxmin找出最小值位置。

  print(u'BIC最小的p值和q值为:%s、%s' %(p, q))

  '''

  5 预测

  在选好了参数后,我们需要运用模型进行后来5天的销量进行预测。

  这里运用Python进行预测:

  # 选取好p,q后进行ARIMA预测

  model = ARIMA(data_, (p,1,q) ).fit() # 建立ARIMA(1, 1, 1)模型

  model.summary2() # 给出一份模型报告

  r = model.forecast(5) # 做出未来五天的预测结果

  pro_r = r[0]

  预测结果:

  做出未来五天的预测结果:

  [ 9.49325086 9.25931922 10.35808756 8.96617407 9.23941594]

  我这里也加上了完整的ARIMA算法的Python的代码:

  # -*- coding: utf-8 -*-

  # @Time : 2020/4/3 22:50

  '''

  1.运用模型:ARIMA

  '''

  import pandas as pd

  import numpy as np

  import matplotlib.pyplot as plt

  import seaborn as sns #seaborn画出的图更好看,且代码更简单,缺点是可塑性差

  from statsmodels.graphics.tsaplots import plot_acf #自相关图

  from statsmodels.tsa.stattools import adfuller as ADF #平稳性检测

  from statsmodels.graphics.tsaplots import plot_pacf #偏自相关图

  from statsmodels.stats.diagnostic import acorr_ljungbox #白噪声检验

  from statsmodels.tsa.arima_model import ARIMA #引入ARIMA模型

  #seaborn 是建立在matplotlib之上的

  #文件的导入,和data的选取。

  inputfile = 'D:/Python/Python_learning/HBUT/model_3/test_four.xlsx'

  data = pd.read_excel(inputfile ,sheet_name= 'Sheet2', index_col = '日期')

  print(data.head())

  print(data[-5:])郑州好的妇科医院 http://www.zzkedayy.com/

  data_1 = data['SS81346']; data_2 = data['SS81004']

  data_3 = data['SS73210']; data_4 = data['SS81516']; data_5 = data['SS81376']

  data_ = data_5

  #seaborn设置背景

  sns.set(color_codes=True)

  plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签

  plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

  plt.rcParams['figure.figsize'] = (8, 5) #设置输出图片大小

  #自相关图

  #自相关图显示自相关系数长期大于零,说明时间序列有很强的相关性

  f = plt.figure(facecolor='white')

  ax1 = f.add_subplot(1, 1, 1)

  data_drop = data_.dropna() #将数据data dropna()

  plot_acf(data_drop, lags=31, ax=ax1)

  #平稳性检查

  print(u'原始序列的ADF检验结果为:')

  print(ADF(data_)) #通过导入的ADF模块返回销量的平稳性检查

  #单位根统计量对应的p的值显著大于0.05,最终判断该序列是非平稳序列

  #1阶差分后的时序图

  f = plt.figure(facecolor='white')

  ax2 = f.add_subplot(1, 1, 1)

  D_data = data_.diff().dropna() #1阶差分,丢弃na值

  D_data.plot(ax = ax2)

  print(u'一阶差分序列的ADF检验结果为:')

  print(ADF(D_data))

  #输出p值远小于0.05,所以1阶差分之后是平稳非白噪声序列

  #绘制一阶差分前后的图像

  f = plt.figure(facecolor='white')

  ax3 = f.add_subplot(2, 1, 1)

  plot_acf(D_data, lags=31, ax=ax3) #自相关

  ax4 = f.add_subplot(2, 1, 2)

  plot_pacf(D_data, lags=31, ax=ax4) #偏相关

  p = 1

  q = 1

  #选取好p,q后进行ARIMA预测

  model = ARIMA(data_, (p,1,q) ).fit() #建立ARIMA(1, 1, 1)模型

  model.summary2() #给出一份模型报告

  r = model.forecast(5) #做出未来五天的预测结果

  pro_r = r[0]

  print('做出未来五天的预测结果:')

  print(pro_r)

  #添加预测值到图像上

  pre_data = pd.Series(pro_r, index=['2019/03/13', '2019/03/14', '2019/03/15', '2019/03/16', '2019/03/17'], name='SS81346')

  pre_data.index.name = '日期'

  #绘图

  fig = plt.figure()

  ax = fig.add_subplot(1, 1, 1)

  ax.plot(data_, 'k', label='one')

  ax.plot(pre_data,'r', label='two')

  ax.set_title('商品: SS81376')

  ax.set_xlabel('日期')

  ax.set_ylabel('销量')

  ax.set_xticks(['2018/09/01', '2018/10/01', '2018/11/01',

  '2018/12/01', '2019/01/01', '2019/02/01', '2019/02/28', '2019/03/18'])

  plt.show()

  得出图像

  从图像可以看出,黑色部分的数据是原有的数据,红色的数据为销量预测的数据,可以看出预测的后5天的数据具有很好的效果,也能够很好的反映模型的预测能力。

posted @ 2020-05-04 16:58  tiana_Z  阅读(1569)  评论(0编辑  收藏  举报