[学习笔记]最大权闭合子图

定义

一个有向图,有点权\(w_i\),对于子图为闭合的最大权和。

解法

先给定一个解法

image


\(w_i > 0\),连\((S,i,w_i)\)
\(w_i < 0\),连\((i,T,-w_i)\)
原图边连
\((u,v,\infty)\)

答案为所有正点权之和 - 最小割。

证明:

  • 知最小割一定为简单割
  • 知简单割和闭合子图对应

那么最大权闭合子图的权的
闭合子图和\(S\)构成集合\(V_s\),其余点和\(T\)构成\(V_T\)
\(W = V_{s1} - V_{s2} \\s1 = \forall i \in s,w_i > 0\\s2 = \forall i \in s,w_i < 0 \\V_k = sum_{i \in k}|w_k|\)

最小割\(c(S,T) = V_{T1} + V_{S2}\)

所以\(W + c(s,t) =\)所有正点权和

posted @ 2022-01-14 21:37  fhq_treap  阅读(67)  评论(1编辑  收藏  举报