第一类斯特林数和第二类斯特林数

\({a\brack b}\)
\({a\brace b}\)

第一类斯特林数

其组合意义是将 \(n\) 个数划分为 \(k\) 个圆排列的方案数。

\({n\brack k} = {n - 1\brack k - 1} + (n - 1){n - 1\brack k}\)

第二类斯特林数

其组合意义是将 \(n\) 个数划分为 \(k\) 个集合的方案数。

\({n\brace k} = {n - 1\brace k - 1} + (k) {n - 1\brace k}\)

快速求一个单值 \({n\brace k}\) 有如下公式:

\({n\brace k} = \frac{1}{k!}\sum_{i = 0}^k (-1)^i \binom{k}{i} (k - i)^n\)

posted @ 2021-10-16 11:35  fhq_treap  阅读(133)  评论(0编辑  收藏  举报