『MdOI R1』Treequery
我们可以思考怎么做呢。
首先我们需要进行一些分类讨论:
我们先思考一下如果所有关键点都在 \(p\) 的子树内,
那显然是所有关键点的 \(Lca\) 到 \(p\) 距离。
如果所有关键点一些在 \(p\) 的子树里,一些在子树外,则答案显然为 \(0\)。
那我们只需要接着讨论一下所有关键点在都在子树外的情况即可。
我们知道一个点一定会沿着祖先往下走,然后在往一个子树进入。
如果关键点全都是在祖先的一个子树内,那答案一定是这些关键点的 \(Lca\) 和 \(p\) 的距离。
否则这个答案一定是到祖先的链上的某个点,这个点满足是这个子树里有关键点且是最深的点。
区间 \(Lca\) 可以使用线段树解决,然后我们在 \(dfn\) 序上做一个主席树的操作,然后就可以查询子树内的点的情况了。
// code by fhq_treap
#include<bits/stdc++.h>
#define ll int
#define N 300005
inline ll read(){
char C=getchar();
ll A=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') A=(A << 1)+(A << 3)+(C - 48) , C=getchar();
return A*F;
}
template <typename T>
void write(T x)
{
if(x < 0) {
putchar('-');
x = -x;
}
if(x > 9)
write(x/10);
putchar(x % 10 + '0');
return;
}
ll n,q;
ll head[N],cnt;
struct P{
int to,next,w;
}e[N << 1];
inline void add(int x,int y,int w){
e[++cnt].to = y,e[cnt].next = head[x],e[cnt].w = w,head[x] = cnt;
}
//tree
ll dfn[N],s[N],inv[N];
ll dfncnt;
int fa[N][30],dep[N],end[N];
inline void dfs(int x,int f){
end[x] = dfn[x] = ++dfncnt;
dep[x] = dep[f] + 1;
inv[dfncnt] = x;
fa[x][0] = f;
for(int i = 1;i < 30;i ++)
fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(int i = head[x];i;i = e[i].next){
int v = e[i].to;
if(v == f)continue;
s[v] = s[x] + e[i].w;
dfs(v,x);
end[x] = std::max(end[x],end[v]);
}
}
inline ll lca(ll x,ll y){
if(dep[y] > dep[x])
std::swap(x,y);
for(int i = 29;i >= 0;--i){
if(dep[fa[x][i]] >= dep[y])
x = fa[x][i];
}
if(x == y)
return x;
for(int i = 29;i >= 0;--i){
if(fa[x][i] != fa[y][i])
x = fa[x][i],y = fa[y][i];
}
return fa[x][0];
}
ll T[N << 2];
#define ls(x) (x << 1)
#define rs(x) (x << 1 | 1)
#define mid ((l + r) >> 1)
#define root 1,1,n
inline void build(int u,int l,int r){
if(l == r){
T[u] = l;·1全额日图与i哦怕【-】
return ;
}
build(ls(u),l,mid);
build(rs(u),mid + 1,r);
T[u] = lca(T[ls(u)],T[rs(u)]);
return ;
}
inline ll qlca(int u,int l,int r,int tl,int tr){
if(tl <= l && r <= tr)
return T[u];
ll li,ri;li = ri = 0;
if(tl <= mid)
li = qlca(ls(u),l,mid,tl,tr);
if(tr > mid)
ri = qlca(rs(u),mid + 1,r,tl,tr);
return (li && ri) ? lca(li,ri) : li + ri;
}
//dfn_lca
int H[N * 40];
int Hcnt;
int Head[N],Ls[N * 40],Rs[N * 40];
inline void merge(int las,int &now,int p,int l,int r){
if(!now)now = ++Hcnt;
Ls[now] = Ls[las];
Rs[now] = Rs[las];
H[now] = H[las] + 1;
if(l == r)
return ;
if(p <= mid){
Ls[now] = 0;
merge(Ls[las],Ls[now],p,l,mid);
}
if(p > mid){
Rs[now] = 0;
merge(Rs[las],Rs[now],p,mid + 1,r);
}
}
inline ll find(int las,int now,int l,int r,int tl,int tr){
if(tl <= l && r <= tr)
return H[now] - H[las];
ll ans = 0;
if(tl <= mid)
ans += find(Ls[las],Ls[now],l,mid,tl,tr);
if(tr > mid)
ans += find(Rs[las],Rs[now],mid + 1,r,tl,tr);
return ans;
}
//主席树
ll las = 0;
inline void solve(ll now,ll l,ll r){
ll num = find(Head[dfn[now] - 1],Head[end[now]],1,n,l,r);
if(num == (r - l + 1)){
las = s[qlca(root,l,r)] - s[now];
std::cout<<las<<std::endl;
}else{
if(num != 0){
std::cout<<(las = 0)<<std::endl;
return ;
}
ll x = now;
for(int i = 29;i >= 0;--i){
int p = fa[x][i];
if(p != 0){
if(!(find(Head[dfn[p] - 1],Head[end[p]],1,n,l,r)))
x = fa[x][i];
}
}
if(fa[x][0] != 0 && !(find(Head[dfn[fa[x][0]] - 1],Head[end[fa[x][0]]],1,n,l,r)))
x = fa[x][0];
x = fa[x][0];
ll L1 = qlca(root,l,r);ll L2 = lca(now,L1);
if(L1 == L2)
las = s[now] - s[x];
else
las = s[now] - 2 * s[L2] + s[L1];
std::cout<<las<<std::endl;
return ;
}
}
int main(){
scanf("%d%d",&n,&q);
for(int i = 1;i < n;++i){
ll x,y,w;
scanf("%d%d%d",&x,&y,&w);
add(x,y,w);
add(y,x,w);
}
dfs(1,0);
build(root);
for(int i = 1;i <= n;++i)
merge(Head[i - 1],Head[i],inv[i],1,n);
while(q -- ){
ll p,l,r;
scanf("%d%d%d",&p,&l,&r);
p ^= las;
l ^= las;
r ^= las;
solve(p,l,r);
}
}