CF1264D1 Beautiful Bracket Sequence (easy version)
考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算。
我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度。
我们设\(f_{i,j}\)为\(i\)点合法删除向左延伸的最大长度。
\( f_{i,j} = \left\{ \begin{aligned} &f_{i - 1,j} (a[i] = ')'\ )\\ &f_{i - 1,j - 1}(a[i] = ')'\ )\\ &f_{i - 1,j} + f_{i - 1 ,j - 1} (a[i] = '?'\ )\\ \end{aligned} \right. \)
设\(g_{i,j}\)为向右延伸,则有同样的转移。
\(ans = \sum_{i = 1}^n\sum_{j = 1}^j f_{i,j} * g_{i + 1,j} * j\)
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define N 2005
#define mod 998244353
char a[N];
ll n;
ll f[N][N],g[N][N];
int main(){
scanf("%s",a + 1);
n = strlen(a + 1);
f[0][0] = 1;
for(int i = 1;i <= n;++i){
if(a[i] == '(' || a[i] == '?')
for(int j = 1;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j - 1]) % mod;
if(a[i] == ')' || a[i] == '?')
for(int j = 0;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j]) % mod;
}
g[n + 1][0] = 1;
for(int i = n;i >= 1;--i){
if(a[i] == ')' || a[i] == '?')
for(int j = 1;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j - 1]) % mod;
if(a[i] == '(' || a[i] == '?')
for(int j = 0;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j]) % mod;
}
ll ans = 0;
for(int i = 1;i <= n - 1;++i)
for(int j = 1;j <= n;++j)
ans = (ans + f[i][j] * g[i + 1][j] % mod * j % mod) % mod;
std::cout<<ans<<std::endl;
}