[洛谷P2000 拯救世界]

生成函数版题。
考虑对于这些条件写出\(OGF\)
\(1 + x^6 + x^{12} + x^{18}..... = \frac{1}{1 - x^6}\)
\(1 + x + x ^ 2 + x^3 + ..... x^9 = \frac{1 - x^{10}}{1 - x}\)
\(1 + x + x ^ 2 + x^3 + ..... x^5 = \frac{1 - x^{6}}{1 - x}\)
\(1 + x^4 + x^{8} + x^{12}..... = \frac{1}{1 - x^4}\)
\(1 + x + x ^ 2 + x^3 + ..... x^7 = \frac{1 - x^{8}}{1 - x}\)
\(1 + x = \frac{1 - x^{2}}{1 - x}\)
\(1 + x^8 + x^{16} + x^{24}..... = \frac{1}{1 - x^8}\)
\(1 + x^{10} + x^{20} + x^{30}..... = \frac{1}{1 - x^10}\)
\(1 + x + x ^ 2 + x^3 + x^4 = \frac{1 - x^{5}}{1 - x}\)
考虑方案数就是这些生成函数的拼接再取\(x^n\)的系数
拼接完时\(\frac{1}{(1 - x) ^ 5}\)
有这样的公式
\(\frac{1}{(1 - x) ^ n} = \sum_{i = 0} ^ {\infty}C^i_{n + i - 1}x^i\)
提取系数。

posted @ 2021-04-16 20:20  fhq_treap  阅读(51)  评论(0编辑  收藏  举报