CF618F Double Knapsack
题目
思路
很不错的一个构造题(我不会
考虑计两个数组\(A,B\)作为前缀和
令\(j\)为满足\(A_i <= B_j\)且最小的值
由此得出:\(A_i > B_{j - 1}\)
再得出\(B_j - A_i <= n\)
\(i\)从\(0\)开始计,所以以鸽笼原理,必有\(A_{i1} - B_{j1} = A{i2} - B_{j2}\)
于是移项 得出答案
然后就是一些细节上的处理
代码
// code by Dix_
#include<bits/stdc++.h>
#define ll long long
inline ll read(){
char C=getchar();
ll N=0 , F=1;
while(('0' > C || C > '9') && (C != '-')) C=getchar();
if(C == '-') F=-1 , C=getchar();
while('0' <= C && C <= '9') N=(N << 1)+(N << 3)+(C - 48) , C=getchar();
return F*N;
}
ll n,a[1000010],b[1000010];
ll A[1000010],B[1000010];
struct P{
ll x,y;
}QWQ[1000010];
ll num = 0;
ll lb = 0;
int main(){
scanf("%lld",&n);
for(int i = 1;i <= n;++i){
scanf("%lld",&a[i]);
A[i] = A[i - 1] + a[i];
}
for(int i = 1;i <= n;++i){
scanf("%lld",&b[i]);
B[i] = B[i - 1] + b[i];
}
bool f = 0;
if(B[n] < A[n]){
f = 1;
std::swap(A,B);
}
for(int i = 0;i <= n;++i)
QWQ[i].x = -1,QWQ[i].y = -1;
ll v;
for(int i = 0;i <= n;++i){
while(B[lb] < A[i] && lb + 1 <= n)
lb += 1 ;
v = B[lb] - A[i];
if(QWQ[v].x == -1)
QWQ[v].x = i,QWQ[v].y = lb;
else{
num = i;
break;
}
}
if(f)
std::swap(A,B),std::swap(num,lb),std::swap(QWQ[v].x,QWQ[v].y);
std::cout<<num - QWQ[v].x<<std::endl;
for(int i = QWQ[v].x + 1;i <= num;++i){
std::cout<<i<<" ";
}
puts("");
std::cout<<lb - QWQ[v].y<<std::endl;
for(int i = QWQ[v].y + 1;i <= lb;++i){
std::cout<<i<<" ";
}
}