P4158 [SCOI2009]粉刷匠

题目链接

我们不妨先考虑只有一行的情形。

我们做两个前缀和redi,bulei分别表示前i个里有多少个红色块和蓝色块。

f[i][k]为做到第i块,此时用了k次涂刷的最大收益。

我们思考如下问题:既然重复涂色没有收益,那么我们强制让我们的涂色方案没有重叠的情况,即让我们对于这一行的方案如下图:

可以看出一段木块被分割成若干块(无色代表没涂色。

我们只要从i向前枚举上一段的终点在哪即可转移,对于i这块不涂色的情况我们直接拿i1的答案来覆盖即可

所以对于一条木块我们有了O(m3)的做法来求出f

		for(int r = 1;r <= m;++r){
			for(int k = 1;k <= m;++k){
				f[r][k] = f[r - 1][k];
				for(int l = 1;l <= r;++l){
					f[r][k] = std::max(f[l - 1][k - 1] + red[r] - red[l - 1],f[r][k]);
					f[r][k] = std::max(f[l - 1][k - 1] + bule[r] - bule[l - 1],f[r][k]);	
				}
			}
		}

我们接下来考虑我们做完了一条木块怎么统计答案:

	 	for(int to = t;to >= 0;-- to)
	 	for(int k = 0;k <= std::min(m,(ll)to);++k)
	 	fans[to] = std::max(fans[to],fans[to - k] + f[m][k]),ans = std::max(ans,fans[to]); 

类似于一维背包即可。(注意枚举k时不要超出数组f的大小,因为这个我调了好久)

所以最后的复杂度是O(n(m3+tm))

喜闻乐见的代码环节

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long

ll n,m,t,ans = 0,f[55][55];
ll red[55],bule[55];
ll fans[2505];

void init(){
	memset(f,0,sizeof(f));
	memset(red,0,sizeof(red));
	memset(bule,0,sizeof(bule));
}

int main(){
//	freopen("q.in","r",stdin);
//	freopen("q.out","w",stdout);
	memset(fans,0,sizeof(fans));
	scanf("%lld%lld%lld",&n,&m,&t);
	for(int i = 1;i <= n;++i){
		init();
		char s[55];
		scanf("%s",s + 1);
		for(int i = 1;i <= m;++i){
			red[i] = red[i - 1];
			bule[i] = bule[i - 1];
			if(s[i] == '0')
			red[i] ++ ;
			else
			bule[i] ++ ;
		}
		for(int r = 1;r <= m;++r){
			for(int k = 1;k <= m;++k){
				f[r][k] = f[r - 1][k];
				for(int l = 1;l <= r;++l){
					f[r][k] = std::max(f[l - 1][k - 1] + red[r] - red[l - 1],f[r][k]);
					f[r][k] = std::max(f[l - 1][k - 1] + bule[r] - bule[l - 1],f[r][k]);	
				}
			}
		}
//		for(int i = 1;i <= m;++i,puts(""))
//		for(int k = 1;k <= m;++k)
//		std::cout<<f[i][k]<<" ";
	 	for(int to = t;to >= 0;-- to)
	 	for(int k = 0;k <= std::min(m,(ll)to);++k)
	 	fans[to] = std::max(fans[to],fans[to - k] + f[m][k]),ans = std::max(ans,fans[to]); 
	}
	std::cout<<ans<<std::endl; 
}
 

本文作者:fhq_treap

本文链接:https://www.cnblogs.com/dixiao/p/14110760.html

版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。

posted @   fhq_treap  阅读(86)  评论(0编辑  收藏  举报
编辑推荐:
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· .NET 适配 HarmonyOS 进展
阅读排行:
· 手把手教你更优雅的享受 DeepSeek
· 腾讯元宝接入 DeepSeek R1 模型,支持深度思考 + 联网搜索,好用不卡机!
· AI工具推荐:领先的开源 AI 代码助手——Continue
· 探秘Transformer系列之(2)---总体架构
· V-Control:一个基于 .NET MAUI 的开箱即用的UI组件库
点击右上角即可分享
微信分享提示
评论
收藏
关注
推荐
深色
回顶
收起