【CSP2019 D1T2】【括号树】

题面

不再多说,想必大家都看过这个题

思路

我们可以手推几个满足条件的字符串
我们发现在这些字符串里
每个)都与离它最近的(的匹配
所以我们维护树上每个节点到根节点中没用使用过的(的位置(nl[n]) h[i]表示以i的结尾的满足条件的串的个数

	nl[n] = nl[fa[n]];	
	if(value[n] == 1)
	nl[n] = n;
	else
	{
		if(nl[n] != 0)
        {
        ll f = fa[nl[n]];
        nl[n] = nl[f];
	h[n] = 1 + h[f];//把离)最近的(使用
		}
	}

最后因为是字串 所以需要h[i]前缀和
(注意\(1<=f_u<u\)

代码

#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const ll M = 500015;
struct edge{
	ll to,next;
}QWQ[M];
ll head[M],n,fa[M],value[M],h[M],nl[M],ans;
void merge(ll x,ll y)
{
	QWQ[ ++QWQ[0].to ].to = x;
	QWQ[ QWQ[0].to ].next = head[y];
	head[y] = QWQ[0].to;
}
void dfs(ll n)
{
	nl[n] = nl[fa[n]];	
	if(value[n] == 1)
	nl[n] = n;
	else
	{
		if(nl[n] != 0)
        {
        ll f = fa[nl[n]];
        nl[n] = nl[f];
		h[n] = 1 + h[f];
		}
	}
	for(ll i = head[n];i;i = QWQ[i].next)
	dfs(QWQ[i].to);
}
int main()
{
	scanf("%lld",&n);
	char c;
	for(ll i = 1;i <= n;i++)
	{
		c = getchar();
		while(c != '('&&c != ')')
		c = getchar();
		if(c == '(')
		value[i] = 1;
		if(c == ')')
		value[i] = 2;
	}
	for(ll i = 2;i <= n;i++)
	{
		scanf("%lld",&fa[i]);
		merge(i,fa[i]);
	}
	dfs(1);
	ans = h[1];
	for(ll i = 2;i <= n;i++)
	{
		ll j = i;
		h[i] += h[fa[j]];
		ans ^= i * h[i];
	} 
	cout<<ans;
}
posted @ 2020-09-25 21:40  fhq_treap  阅读(122)  评论(0编辑  收藏  举报