【CSP2019 D1T2】【括号树】
题面
不再多说,想必大家都看过这个题
思路
我们可以手推几个满足条件的字符串
我们发现在这些字符串里
每个)都与离它最近的(的匹配
所以我们维护树上每个节点到根节点中没用使用过的(的位置(nl[n]) h[i]表示以i的结尾的满足条件的串的个数
nl[n] = nl[fa[n]];
if(value[n] == 1)
nl[n] = n;
else
{
if(nl[n] != 0)
{
ll f = fa[nl[n]];
nl[n] = nl[f];
h[n] = 1 + h[f];//把离)最近的(使用
}
}
最后因为是字串 所以需要h[i]前缀和
(注意\(1<=f_u<u\))
代码
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const ll M = 500015;
struct edge{
ll to,next;
}QWQ[M];
ll head[M],n,fa[M],value[M],h[M],nl[M],ans;
void merge(ll x,ll y)
{
QWQ[ ++QWQ[0].to ].to = x;
QWQ[ QWQ[0].to ].next = head[y];
head[y] = QWQ[0].to;
}
void dfs(ll n)
{
nl[n] = nl[fa[n]];
if(value[n] == 1)
nl[n] = n;
else
{
if(nl[n] != 0)
{
ll f = fa[nl[n]];
nl[n] = nl[f];
h[n] = 1 + h[f];
}
}
for(ll i = head[n];i;i = QWQ[i].next)
dfs(QWQ[i].to);
}
int main()
{
scanf("%lld",&n);
char c;
for(ll i = 1;i <= n;i++)
{
c = getchar();
while(c != '('&&c != ')')
c = getchar();
if(c == '(')
value[i] = 1;
if(c == ')')
value[i] = 2;
}
for(ll i = 2;i <= n;i++)
{
scanf("%lld",&fa[i]);
merge(i,fa[i]);
}
dfs(1);
ans = h[1];
for(ll i = 2;i <= n;i++)
{
ll j = i;
h[i] += h[fa[j]];
ans ^= i * h[i];
}
cout<<ans;
}