配置conda虚拟环境,在jupyter内核中使用,下载适合的GPU版本tensorflow
1.创建虚拟环境并激活进入
conda create -n '名称'
source activate '名称'
environment.yml
name: ‘名称’ channels: - defaults dependencies: - python=3.6 - numpy - pandas - scikit-learn - scipy - matplotlib - seaborn
2.安装依赖
conda env update -f environment.yml
3.安装对应gpu版本tensorflow -参考:https://blog.csdn.net/weixin_41012765/article/details/124973351
4. pip install tensorflow-gpu==2.4.0
5.将虚拟环境对应jupyter内核
pip install ipykernel python -m ipykernel install --user --name='内核名称'
6.测试tensorflow是否能使用GPU
import tensorflow as tf print("TensorFlow version:", tf.__version__) print("GPU available:", tf.config.list_physical_devices('GPU'))