AmazingCounters.com

[BZOJ]2194: 快速傅立叶之二

题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n)。(n<=10^5)

思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷积,倒着输出即可),FFT模板复习。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
inline int read()
{
    int x;char c;
    while((c=getchar())<'0'||c>'9');
    for(x=c-'0';(c=getchar())>='0'&&c<='9';)x=(x<<3)+(x<<1)+c-'0';
    return x;
}
#define MN 262144
struct cp
{
    double r,i;
    cp(double r=0,double i=0):r(r),i(i){}
    cp operator+(cp b){return cp(r+b.r,i+b.i);}
    cp operator-(cp b){return cp(r-b.r,i-b.i);}
    cp operator*(cp b){return cp(r*b.r-i*b.i,r*b.i+i*b.r);}
}w[2][MN+5],a[MN+5],b[MN+5],c[MN+5];
const double pi=acos(-1);
int N,R[MN+5];
void init(int n)
{
    for(N=1;N<n;N<<=1);
    int i,j,k;cp g(cos(2*pi/N),sin(2*pi/N));
    for(i=w[0][0].r=1;i<N;++i)w[0][i]=w[0][i-1]*g;
    for(i=w[1][0].r=1;i<N;++i)w[1][i]=w[0][N-i];
    for(i=j=0;i<N;R[++i]=j)for(k=N>>1;(j^=k)<k;k>>=1);
}
void fft(cp*x,int v)
{
    int i,j,k;
    for(i=j=0;i<N;++i)if(i<R[i])swap(x[i],x[R[i]]);
    for(i=1;i<N;i<<=1)for(j=0;j<N;j+=i<<1)for(k=0;k<i;++k)
    {
        cp p=x[i+j+k]*w[v][N/(i<<1)*k];
        x[i+j+k]=x[j+k]-p;x[j+k]=x[j+k]+p;
    }
    if(v)for(i=0;i<N;++i)x[i].r/=N,x[i].i/=N;
}
int main()
{
    int n=read(),i;
    for(i=0;i<n;++i)a[n-i-1].r=read(),b[i]=read();
    init(n<<1);fft(a,0);fft(b,0);
    for(i=0;i<N;++i)c[i]=a[i]*b[i];fft(c,1);
    for(i=n;i--;)printf("%d\n",int(c[i].r+0.5));
}

 

posted on 2017-03-15 21:55  ditoly  阅读(130)  评论(0编辑  收藏  举报