牛客网-连续子树组的最大和-动态规划

题目描述

求连续子向量的最大和。

{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和。(子向量的长度至少是1)

思路:

(1)自己做的

1.设两个指针,start和end只要s-e的和大于0,表示值可取,移动e指针,并加一个变量记录最大值

2.若值小于0,则移动s和e指针

(2)动态规划(参考)链接:https://www.nowcoder.com/questionTerminal/459bd355da1549fa8a49e350bf3df484?f=discussion

dp[i]表示以元素array[i]结尾的最大连续子数组和.

以[-2,-3,4,-1,-2,1,5,-3]为例 
可以发现, 
dp[0] = -2
dp[1] = -3
dp[2] = 4
dp[3] = 3
以此类推,会发现 
dp[i] = max{dp[i-1]+array[i],array[i]}.

代码:

1.指针移动

# -*- coding:utf-8 -*-
class Solution:
    def FindGreatestSumOfSubArray(self, array):
        # write code here
        result = array[0]
        fin = result
        start = 0
        end = 1
        while(start<=end and end<len(array)):
            result += array[end]
            if(result<=0):
                if(result>fin):
                    fin = result
                result = 0
                start = end+1
                end = start
                continue
            if(result>fin):
                fin = result
            end += 1
        return fin

2.动态规划

class Solution:
    def FindGreatestSumOfSubArray(self, array):
        # write code here
        dp = [i for i in array]
        for i in range(1,len(array)):
            dp[i] = max(dp[i-1]+array[i],array[i])
        return max(dp)

 

posted @ 2019-10-29 15:47  ditingz  阅读(221)  评论(0编辑  收藏  举报