DPHARD

此篇收集各类DP题。

《1D1D动态规划优化初步》的3个模型

1. f[x] = min(f[i]+w[i, x]), i < x且w[i, x]满足单调性(即w[i, j]+w[i+1, j+1] <= w[i, j+1]+w[i+1, j],下四边形同)

2. f[x] = min(g[i])+w[x], b[x] <= i < x, b[x]单调递增

3. f[i]=max{x[j]*a[i]+y[j]*b[i]} = b[i]*max{a[i]/b[i]*x[j]+y[j]},变成了斜率优化

 

一. 四边形不等式

eg. Hiho1621:超市规划

dp[i, j] = min{ dp[k, j-1] + w[k+1, i] }, 把长度为i的序列切分成j段,可糙猛快分治

dp[i, j] = min{ dp[i, k-1] + dp[k, j] + w[i, j] }, 合并[i, j]区间。注意决策点应该在哪些范围之内单调,比如对于区间dp的方程来说,决策点的单调范围就应该是行号小于等于列号的那一部分。

以上形式通常情况下w会满足四边形不等式,会使得决策opt[i, j] 与 opt[i, j-1], opt[i-1, j]满足单调性。

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 const int N = 2010;
 4 const double inf = 1e17;
 5 double dp[N][N], c[N][N];
 6 double a[N], sum1[N], sum2[N], opt[N][N];
 7 int main()
 8 {
 9     int n, m;
10     scanf("%d%d",&n,&m);
11     for(int i = 1; i <= n; i++) 
12         scanf("%lf", a+i);
13     sort(a+1, a+n+1);
14     for(int i = 1; i <= n; i++) {
15         sum1[i] = sum1[i-1]+a[i];
16         sum2[i] = sum2[i-1]+a[i]*a[i];
17     }
18     for(int i = 1; i <= n; i++)
19      for(int j = i+1; j <= n; j++){
20          double mid = (sum1[j]-sum1[i-1])/(j-i+1);
21          c[i][j] = (sum2[j]-sum2[i-1])+(j-i+1)*mid*mid-2*mid*(sum1[j]-sum1[i-1]);
22      }
23     for(int i = 1; i <= m; i++)
24      for(int j = 1; j <= n; j++)
25       dp[i][j] = inf;
26     for(int i = 1; i <= n; i++) dp[1][i] = c[1][i];
27     for(int i = 2; i <= m; i++){
28         opt[i][n+1] = n;
29         for(int j = n; j >= 1; j--){
30             for(int k = opt[i-1][j]; k <= opt[i][j+1]; k++)
31              if(dp[i][j] > dp[i-1][k]+c[k+1][j]){
32                     opt[i][j] = k;
33                     dp[i][j] = dp[i-1][k]+c[k+1][j];
34              }
35         }
36     }
37     printf("%.3lf\n", dp[m][n]);
38     return 0;
39 }
View Code

决策单调且不要求在线的糙快猛优化方法(for内写成i <= dr && i < m会有bug,m = 1的时候,循环无法进入,导致f[1]值无穷大)

 1 //个人感觉适用于状态数为二维的dp, 下一行(列)由前一行(列)推出, 且满足决策单调性
 2 void solve(int l, int r, int dl, int dr) {
 3     if(l > r) return ;
 4     int m = (l+r) >> 1, dm;
 5     for(int i = dl; i <= dr; i++) {
 6         if(i更新f[m]更优) {
 7            dm = i;
 8             更新f[m];
 9         }
10     }
11     solve(l, m-1, dl, dm), solve(m+1, r, dm, dr);
12 }

 基于决策单调的糙猛快分治

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 const int N = 2010;
 4 const double inf = 1e17;
 5 double dp[N][N], c[N][N];
 6 double a[N], sum1[N], sum2[N], opt[N][N];
 7 void solve(double *f1, double *f2, int l, int r, int dl, int dr) {
 8     if(l > r) return ;
 9     int m = (l+r) >> 1, dm;
10     for(int i = dl; i <= dr; i++) {
11         if(f1[i]+c[i+1][m] < f2[m])
12             f2[m] = f1[i]+c[i+1][m], dm = i;
13     }
14     solve(f1, f2, l, m-1, dl, dm);
15     solve(f1, f2, m+1, r, dm, dr);
16 }
17 int main() {
18     int n, m;
19     scanf("%d%d",&n,&m);
20     for(int i = 1; i <= n; i++) 
21         scanf("%lf", a+i);
22     sort(a+1, a+n+1);
23     for(int i = 1; i <= n; i++) {
24         sum1[i] = sum1[i-1]+a[i];
25         sum2[i] = sum2[i-1]+a[i]*a[i];
26     }
27     for(int i = 1; i <= n; i++)
28      for(int j = i+1; j <= n; j++){
29          double mid = (sum1[j]-sum1[i-1])/(j-i+1);
30          c[i][j] = (sum2[j]-sum2[i-1])+(j-i+1)*mid*mid-2*mid*(sum1[j]-sum1[i-1]);
31      }
32 
33     for(int i = 0; i <= m; i++)
34      for(int j = 1; j <= n; j++)
35       dp[i][j] = inf;
36     for(int i = 1; i <= n; i++) dp[1][i] = c[1][i];
37     for(int i = 2; i <= m; i++) 
38         solve(dp[i-1], dp[i], 1, n, 1, n);
39     printf("%.3f\n", dp[m][n]);
40     return 0;
41 }
View Code

 

eg. hiho1933 

四边形不等式优化

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int N = 1e4+5;
 4 
 5 long long a[N], sum[N], dp[N][1005];
 6 int opt[N][1005];
 7 
 8 long long get_sum(int l, int r) {
 9     int m = (l+r) >> 1;
10     long long ans1 = a[m]*(m-l)-(sum[m-1]-sum[l-1]);
11     long long ans2 = (sum[r]-sum[m])-a[m]*(r-m);
12     return ans1+ans2;
13 }
14 
15 int main() {
16     int n, k; cin >> n >> k;
17     for(int i = 1, x, y; i <= n; i++) {
18         cin >> x >> y;
19         a[i] = y;
20     }
21     sort(a+1, a+n+1);
22     for(int i = 1; i <= n; i++) sum[i] = sum[i-1]+a[i];
23 
24     memset(dp, 0x3f, sizeof(dp)); 
25     for(int i = 0; i <= k; i++) dp[0][i] = 0; //这里i <= k写成了i <= n, 一直WA
26     for(int i = 1; i <= n; i++) {
27         opt[i][k+1] = n;
28         for(int j = k; j; j--) {
29             for(int kk = opt[i-1][j]; kk <= opt[i][j+1]; kk++) {
30                 long long tmp =  dp[kk][j-1]+get_sum(kk+1, i);
31                 if(tmp < dp[i][j]) 
32                     dp[i][j] = tmp, opt[i][j] = kk;
33             }
34         }
35     }
36     cout << dp[n][k] << endl;
37     return 0;
38 }
View Code

 基于决策单调的糙猛快分治

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int N = 1e4+5;
 4 
 5 long long a[N], sum[N], dp[2][N];
 6 
 7 long long get_sum(int l, int r) {
 8     if(l >= r) return 0;
 9     int m = (l+r) >> 1;
10     long long ans1 = a[m]*(m-l)-(sum[m-1]-sum[l-1]);
11     long long ans2 = (sum[r]-sum[m])-a[m]*(r-m);
12     return ans1+ans2;
13 }
14 
15 void solve(long long *f1, long long *f2, int l, int r, int dl, int dr) {
16     if(l > r) return ;
17     int m = (l+r) >> 1, dm;
18     for(int i = dl; i <= dr; i++) {
19         long long tmp = f1[i]+get_sum(i+1, m);
20         if(tmp < f2[m]) {
21             f2[m] = tmp;
22             dm = i;
23         }
24     }
25     solve(f1, f2, l, m-1, dl, dm);
26     solve(f1, f2, m+1, r, dm, dr);
27 }
28 
29 int main() {
30     int n, k; cin >> n >> k;
31     for(int i = 1, x, y; i <= n; i++) {
32         cin >> x >> y;
33         a[i] = y;
34     }
35     sort(a+1, a+n+1);
36     for(int i = 1; i <= n; i++) sum[i] = sum[i-1]+a[i];
37 
38     for(int i = 0; i <= n; i++)
39         dp[1][i] = get_sum(1, i);
40     for(int i = 2; i <= k; i++) {
41         bool now = (i&1);
42         memset(dp[now], 0x3f, sizeof(dp[now]));
43         solve(dp[!now], dp[now], 1, n, 1, n);
44     }
45     cout << dp[k&1][n] << endl;
46     return 0;
47 }
View Code

 

 

二. 斜率优化

eg. HDU3507

f[i] = min(f[j]+(s[i]-s[j])²)+M

     = min(f[j]+s[j]²-2s[i]s[j])+M+s[i]²

     = min(kx+b)+M+s[i]², 其中k = -2s[j], b = f[j]+s[j]², x = s[i]

注:你也可看作k = 2s[i], x = s[j], y = f[j]+s[j]², f[i] = min(y-kx), k是定值,

       则求k为定值的直线y = kx+b的最小截距。脑补画面,将斜率为k的直线移到最下端....

       个人认为将整个min里的值当作y,当前已知值作为自变量比较好...

其它题目的变形:f[i]=max{x[j]*a[i]+y[j]*b[i]} = b[i]*max{a[i]/b[i]*x[j]+y[j]}

因为求min,所以维护倒U形(上凸)

因为k递减,x递增,所以用单调队列维护即可,队列内直线按k递减排序,维护倒U形。

代码区===待填===

ps.

如果x无序,则每次二分查找;

如果k无序,可以用set维护,插入的时候erase掉两侧不符合的直线;

如果x, k都无序,可以用set按k值排序维护直线,查找的时候再二分k,lowerbound计算在哪条斜率的直线上(判断x值是否在该直线的两端点内,不在则继续二分)

 

三、WQS二分

作用就是题目给了一个选物品的限制条件,要求刚好选m个,让你最大化(最小化)权值,然后其特点就是当选的物品越多的时候权值越大(越小)。

http://codeforces.com/blog/entry/49691

https://www.cnblogs.com/HocRiser/p/9834069.html

https://www.cnblogs.com/flashhu/p/9480669.html

https://www.cnblogs.com/CreeperLKF/p/9045491.html

 

=================================================================================================

区间dp

括号dp:

hihocoder1891:有多少种填充*的方案使得括号匹配?

  1 #include <bits/stdc++.h>
  2 
  3 #define ll long long
  4 #define ull unsigned long long
  5 #define st first
  6 #define nd second
  7 #define pii pair<int, int>
  8 #define pil pair<int, ll>
  9 #define pli pair<ll, int>
 10 #define pll pair<ll, ll>
 11 #define tiii tuple<int, int, int>
 12 #define pw(x) ((1LL)<<(x))
 13 #define lson l, m, rt<<1
 14 #define rson m+1, r, rt<<1|1
 15 #define sqr(x) ((x)*(x))
 16 #define SIZE(A) ((int)(A.size()))
 17 #define LENGTH(A) ((int)(A.length()))
 18 #define FIN freopen("A.in","r",stdin);
 19 #define FOUT freopen("A.out","w",stdout);
 20 using namespace std;
 21 /***********/
 22 
 23 template<typename T>
 24 bool scan (T &ret) {
 25     char c;
 26     int sgn;
 27     if (c = getchar(), c == EOF) return 0; //EOF
 28     while (c != '-' && (c < '0' || c > '9') ) c = getchar();
 29     sgn = (c == '-') ? -1 : 1;
 30     ret = (c == '-') ? 0 : (c - '0');
 31     while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0');
 32     ret *= sgn;
 33     return 1;
 34 }
 35 template<typename N,typename PN>inline N flo(N a,PN b){return a>=0?a/b:-((-a-1)/b)-1;}
 36 template<typename N,typename PN>inline N cei(N a,PN b){return a>0?(a-1)/b+1:-(-a/b);}
 37 template<typename T>inline int sgn(T a) {return a>0?1:(a<0?-1:0);}
 38 template<class T> int countbit(const T &n) { return (n==0)?0:(1+countbit(n&(n-1))); }
 39 template <class T1, class T2>
 40 bool gmax(T1 &a, const T2 &b) { return a < b? a = b, 1:0;}
 41 template <class T1, class T2>
 42 bool gmin(T1 &a, const T2 &b) { return a > b? a = b, 1:0;}
 43 template <class T> inline T lowbit(T x) {return x&(-x);}
 44 
 45 template<class T1, class T2>
 46 ostream& operator <<(ostream &out, pair<T1, T2> p) {
 47     return out << "(" << p.st << ", " << p.nd << ")";
 48 }
 49 template<class A, class B, class C>
 50 ostream& operator <<(ostream &out, tuple<A, B, C> t) {
 51     return out << "(" << get<0>(t) << ", " << get<1>(t) << ", " << get<2>(t) << ")";
 52 }
 53 template<class T>
 54 ostream& operator <<(ostream &out, vector<T> vec) {
 55     out << "("; for(auto &x: vec) out << x << ", "; return out << ")";
 56 }
 57 void testTle(int &a){
 58     while(1) a = a*(ll)a%1000000007;
 59 }
 60 const ll inf = 0x3f3f3f3f;
 61 const ll INF = 1e17;
 62 const int mod = 1000000007;;
 63 const double eps = 1e-5;
 64 const int N = 100000+10;
 65 const double pi = acos(-1.0);
 66 
 67 /***********/
 68 
 69 char s[N];
 70 long long dp[2][N];
 71 void add(long long &x, long long y) {
 72     x += y;
 73     if(x >= mod) x %= mod;
 74 }
 75 int main() {
 76     scanf("%s", s);
 77     int tag = 0, modify = 0, base = 0, l = 1;
 78     dp[0][0] = 1;
 79     for(int i = 0; s[i]; i++) {
 80         if(s[i] == '(') 
 81             base++;
 82         else if(s[i] == ')') {
 83             if(base) base--;
 84             else {
 85                 l--;
 86                 if(l == 0) { puts("0"); return 0; }
 87                 modify++;
 88             }
 89         }
 90         else {
 91             if(modify) {
 92                 tag = !tag;
 93                 for(int j = 0; j < l; j++)
 94                     dp[tag][j] = dp[!tag][j+modify];
 95                 modify = 0;
 96             }
 97             tag = !tag;
 98             if(base) {
 99                 memset(dp[tag], 0, sizeof(long long)*(l+2));
100                 for(int j = 0; j < l; j++) {
101                     add(dp[tag][j], dp[!tag][j]);
102                     add(dp[tag][j+2], dp[!tag][j]);
103                 }
104                 base--, l += 2;
105             }
106             else {
107                 memset(dp[tag], 0, sizeof(long long)*(l+1));
108                 for(int j = 0; j < l; j++) {
109                     if(j) add(dp[tag][j-1], dp[!tag][j]);
110                     add(dp[tag][j+1], dp[!tag][j]);
111                 }
112                 l++;
113             }
114         }
115     }
116     if(modify) {
117         tag = !tag;
118         for(int j = 0; j < l; j++)
119             dp[tag][j] = dp[!tag][j+modify];
120         modify = 0;
121     }
122     printf("%lld\n", base? 0: dp[tag][0]);
123     return 0;
124 }
View Code

 

posted @ 2017-11-05 23:25  我在地狱  阅读(358)  评论(0编辑  收藏  举报