Diorvh

导航

【日记】12.29/【题解】CF Good Bye 2019

12.29

CF GoodBye 2019

本年度最后一场比赛上紫,感谢无敌的cyy!

A.Card Game

题意:有1-n一共n张牌,两个人一开始各随机拿一些,每次出一张,谁点数大谁就拿走两张,谁先没牌就输,问谁赢。

思路:拥有最大的那张牌的人赢。

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define mid ((l+r)>>1)
const int M=1e5+20,P=1e9+7;
struct Task{
	int n,k1,k2;
	void init(){
		scanf("%d%d%d",&n,&k1,&k2);
		int mx1=0,mx2=0;
		for(int i=1;i<=k1;++i){
			int c;
			scanf("%d",&c);
			mx1=max(mx1,c);
		}	
		for(int i=1;i<=k2;++i){
			int c;
			scanf("%d",&c);
			mx2=max(mx2,c);
		}	
		if (mx1>mx2)
			printf("YES\n");
		else
			printf("NO\n");
	}
	void run(){
		init();
	}
}t;
int main(){
	int T;
	scanf("%d",&T);
	for(int i=1;i<=T;++i)
		t.run();
	return 0;
}

B.Interesting Subarray

题意:如果一个array满足max(a)-min(a)>=array中元素个数,那么称这个array是interesting的,现在问给定一个array,是否存在一个非空子串array。

思路:可以想到,如果相邻两个差值>=2,那么这两个就是interesting的。如果所有的相邻两个差值都<=1,那么整个都不存在interesting的子array。

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define mid ((l+r)>>1)
const int M=2e5+20,P=1e9+7;
struct Task{
	int n,a[M];
	void init(){
		scanf("%d",&n);
		for(int i=1;i<=n;++i)
			scanf("%d",&a[i]);
	}
	void run(){
		init();
		for(int i=2;i<=n;++i)
			if (abs(a[i]-a[i-1])>=2){
				printf("YES\n%d %d\n",i-1,i);
				return ;
			}
		printf("NO\n");
	}
}t;
int main(){
	int T;
	scanf("%d",&T);
	for(int i=1;i<=T;++i)
		t.run();
	return 0;
}

C.Make Good

题意:若一串数的和=异或和的两倍,那么这一串数是good的。现要求增加不超过3个数,使其变成good的。

思路:这个题思路很简单……记和是s,异或和是xs,那么首先加xs,就变成了s+xs, 0,之后再加s+xs,即可。

我的思路是首先把s搞成100000000的形式,同时保证异或和的位数=s的位数-1,之后把s中那些对应在异或和里为1的再搞成1即可,其实很复杂。

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define mid ((l+r)>>1)
#define db(x) cout<<#x<<":"<<x<<endl;
const int M=2e5+20,P=1e9+7;
struct Task{
	int n;
	LL sump=0,sumx=0;
	void init(){
		scanf("%d",&n);
		sump=sumx=0;
		for(int i=1;i<=n;++i){
			int c;
			scanf("%d",&c);
			sump+=c,sumx^=c;
		}
	}
	int get_max(LL a){
		int p=0;
		while(a>=(1LL<<p))
			++p;
		return p;
	}
	void run(){
		init();
		if (sump==0){
			printf("0\n\n");
			return;
		}
		LL o1=0,o2=0;
		int ca1=get_max(sump),ca2=get_max(sumx);
		o1=(1LL<<ca1)-sump;
		sump+=o1,sumx^=o1;
		ca1=get_max(sump),ca2=get_max(sumx);
		if (ca1==ca2)
			o1+=(1LL<<ca1)+(1LL<<(ca1-1)),sump+=(1LL<<ca1)+(1LL<<(ca1-1)),sumx^=((1LL<<ca1)+(1LL<<(ca1-1))),ca1+=2;
		else if (ca1>ca2+1)
			o1+=(1LL<<(ca1-1)),sump+=(1LL<<(ca1-1)),sumx^=(1LL<<(ca1-1)),ca1+=1;
		printf("3\n");
		printf("%lld ",o1);
		for(int i=ca1-2;i>=2;--i)
			if ((sumx>>(i-1))&1)
				o2+=(1LL<<(i-1));
		printf("%lld %lld\n",o2,o2);
	}
}t;
int main(){
	int T;
	scanf("%d",&T);
	for(int i=1;i<=T;++i)
		t.run();
	return 0;
}

D.Strange Device

题意:有一台诡异机器,对于一个n个数的序列(没有相同的数),每次你输入k个不同的位置,它返回这k个位置上的数中第m大的。现在要求用不超过n次询问,找出m的值。

思路:这个题相当傻。样例已经暗示了做法。只考虑k+1个数,依次mask所有数,答案一定是m个大数和k+1-m个小数。

比如说,12345678,m=5,那么输出结果为:66666555。如果m=3,那么结果为44433333。

找到规律了吧?

#include<bits/stdc++.h>
using namespace std;
map<int,int> mp;
int main(){
	int n,k;
	scanf("%d%d",&n,&k);
	for(int i=1;i<=k+1;++i){
		printf("?");
		for(int j=1;j<=k+1;++j)
			if (j!=i)
				printf(" %d",j);
		putchar('\n');
		cout.flush();
		int s1,s2;
		cin>>s1>>s2;
		++mp[s2];
	}
	map<int,int>::iterator it=mp.begin();
	int val1=it->first,num1=it->second;
	++it;
	int val2=it->first;
	if (val1<val2)
		printf("! %d\n",it->second);
	else
		printf("! %d\n",num1);
	cout.flush();
	return 0;
}

E.Divide Points

题意:有n个不同的点,要求分成A和B两个集合,使得集合内点对之间的距离集合,与集合间点对之间的距离集合没有交集。

思路:cyy教我的……首先考虑既然是黑白染色,那么联想到x+y的奇偶性。事实上,将x+y为奇数划分到A,x+y为偶数划分到B即可。这样集合内部点对距离(差的平方和)一定是偶数,而集合间点对距离一定是奇数,这样就保证了开根之后的距离一定不相同。接下来考虑x+y全为奇数或全为偶数。事实上旋转坐标系即可,就类似于切比雪夫距离和曼哈顿距离转化。见代码。

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define mid ((l+r)>>1)
const int M=1e3+20,P=1e9+7;
struct Point{
	int x,y;
	Point(int a=0,int b=0):x(a),y(b){}
};
struct Task{
	int n;
	Point a[M];
	void init(){
		scanf("%d",&n);
		for(int i=1;i<=n;++i)
			scanf("%d%d",&a[i].x,&a[i].y);
	}
	void run(){
		init();
		while(1){
			int ou=0,ji=0;
			for(int i=1;i<=n;++i)
				if ((a[i].x+a[i].y)%2==0)
					++ou;
				else
					++ji;
			if (ou!=n&&ou!=0){
				printf("%d\n",ou);
				bool kong=false;
				for(int i=1;i<=n;++i){
					if (kong)
						putchar(' ');
					if ((a[i].x+a[i].y)%2==0)
						printf("%d",i),kong=true;
				}
				putchar('\n');
				return;
			}
			else{
				if (ji==n)
					for(int i=1;i<=n;++i)
						a[i].y+=1;
				for(int i=1;i<=n;++i){
					int cax=a[i].x,cay=a[i].y;
					a[i].x=(cax+cay)/2,a[i].y=(cax-cay)/2;
				}
			}
		}
	}
}t;
int main(){
	t.run();
	return 0;
}

posted on 2019-12-30 19:26  diorvh  阅读(239)  评论(0编辑  收藏  举报