12 2018 档案
摘要:差异特征学习指如何获取差异最小的类内和差异最大的类间特征,这里的差异特征学习可应用的场景包含并不仅限于人脸识别,行人重识别和细粒度识别等。 由于这方面涉及太广和自身能力有限,只结合自己使用经验对关键差异的阐述,且略去基本算法描述。 softmaxloss softmaxloss softmaxlos
阅读全文
摘要:在残差逐渐当道时,google开始研究inception和残差网络的性能差异以及结合的可能性,并且给出了实验结构。 本文思想阐述不多,主要是三个结构的网络和实验性能对比。 Inception-v4, Inception-ResNet and the Impact of Residual Connec
阅读全文
摘要:Inception V3根据前面两篇结构的经验和新设计的结构的实验,总结了一套可借鉴的网络结构设计的原则。理解这些原则的背后隐藏的动机比单纯知道这个操作更有意义。 Rethinking the Inception Architecture for Computer Vision 主题:如何高效的增大
阅读全文
摘要:BN的出现大大解决了训练收敛问题。作者主要围绕归一化的操作做了一系列优化思路的阐述,值得细看。 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 深度网络为什么难训
阅读全文
摘要:inception系列的开山之作,有网络结构设计的初期思考。 Going deeper with convolutions motivations: 提高模型性能的最直接方式:1.加深(增加层)2.加宽(增加单层的神经元个数) 带来的两个弊端:1.大规模的参数易导致过拟合且需要更多的训练集 2.更多
阅读全文
摘要:inception 深度学习网络结构
阅读全文