LFU Cache
LFU: least frequently used (LFU) page-replacement algorithm
https://leetcode.com/problems/lfu-cache/?tab=Description
题目描述
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reaches its capacity, it should invalidate the least frequently used item before inserting a new item. For the purpose of this problem, when there is a tie (i.e., two or more keys that have the same frequency), the least recently used key would be evicted.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LFUCache cache = new LFUCache( 2 /* capacity */ );
cache.put(1, 1); cache.put(2, 2); cache.get(1); // returns 1 cache.put(3, 3); // evicts key 2 cache.get(2); // returns -1 (not found) cache.get(3); // returns 3. cache.put(4, 4); // evicts key 1. cache.get(1); // returns -1 (not found) cache.get(3); // returns 3 cache.get(4); // returns 4
数据结构设计
class LFUCache { public: int size; int cap; int minfreq; map<int,pair<int,int>> m;//key to pair<value,freq> map<int,list<int>::iterator> mIter;//key to list location , key在 list中的位置一个iterator map<int,list<int>> fm;//freq to list , list存放的是所有的key, 最后的key是最近访问过的,头部的是最近没有访问的(淘汰) public: LFUCache(int capacity) { cap = capacity; size = 0; } int get(int key) { if(m.count(key) == 0) return -1; //key 频率加1,删除原来其在fm中的位置,插入到新的位置 fm[m[key].second].erase(mIter[key]); m[key].second ++; fm[m[key].second].push_back(key); mIter[key] = --fm[m[key].second].end(); // 当前key所在的位置 if(fm[minfreq].size() == 0) //上面的步骤处理后,可能最小频率已经删除了数据,所以需要判断 minfreq ++; return m[key].first; } void put(int key, int value) { if(cap <= 0) return ; /* 调用成员方法get 如果不存在,返回-1; 如果已经存在,那么就会修改频数,删除旧的位置,添加到新的位置,但是值仍然是原来的,需要修改 */ int storeValue = get(key); if(storeValue != -1) { m[key].first = value; return; // 直接返回 } // 不存在的情况, 已经满了,需要删除频率最小,最近都没有访问过的那个key if(size >= cap){ m.erase(fm[minfreq].front()); mIter.erase(fm[minfreq].front()); fm[minfreq].pop_front(); size --; } pair<int, int> pr(value, 1); m[key] = pr; fm[1].push_back(key); mIter[key] = --fm[1].end(); minfreq = 1; size ++; } };
参考: