基本常用算法总结

1.二叉树的遍历算法

//前序遍历
struct binNode{
    int val;
    binNode* left;
    binNode* right;
    binNode(int a = 0):val(a),left(nullptr),right(nullptr){}
};

void preorder(binNode* root,vector<int>& res){
    if(root == nullptr){
        return;
    }
    res.push_back(root->val);     
    preorder(root->left,res);
    preorder(root->right,res);     
}

vector<int> preorder(binNode* root){
    if(root == nullptr){
        return {};
    }
    vector<int> res;
    stack<binNode*> s;
    binNode* p = root;
    while(p != nullptr || !s.empty()){
        while(p != nullptr){
            res.push_back(p->val);
            s.push(p);
            p = p->left;
        }
        if(!s.empty()){
            p = s.top();
            s.pop();            
            p = p->right;            
        }
        
    }
    return res;    
}

//中序遍历
void inorder(binNode* root,vector<int> &res){
    if(root == nullptr){
        return;
    }    
    inorder(root->left,res);
    res.push_back(root->val);
    inorder(root->right,res);    
}

vector<int> inorder(binNode* root){
    if(root == nullptr){
        return {};
    }
    stack<binNode*> s;
    vector<int> res;
    binNode* p = root;
    while(p != nullptr || !s.empty()){
        while(p != nullptr){
            s.push(p);
            p = p->left;
        
        }
        if(!s.empty()){
            p = s.top();
            s.pop();
            res.push_back(p->val);
            p = p->right;
        }        
        
    }
    
    return res;    
}


//后续遍历

void postorder(binNode* root,vector<int>& res){
    if(root == nullptr){
        return;
    }     
    postorder(root->left,res);
    postorder(root->right,res);    
    res.push_back(root->val);        
}


vector<int> postorder(binNode* root){
    if(root == nullptr){
        return {};
    }    
    stack<binNode*> s;
    s.push(root);
    binNode* cur = root;
    vector<int> res;
    binNode* pre;
    while(!s.empty()){
        cur = s.top();
        if(cur -> left == nullptr && cur -> right == nullptr ||
        (pre != nullptr &&(pre == cur -> right || pre == cur ->left)))
        {
            res.push_back(cur->val);
            s.pop();
            pre = cur;
            
        }
        else{
            if(cur->right){
                s.push(cur->right);
            }
            if(cur->left){
                s.push(cur->left);
            }
        }
    }
    return res;
}
/*后序遍历思路:
保证根结点在左孩子和右孩子访问之后才能访问,
因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,
则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子
和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述
两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次
取栈顶元素的时候,左孩子在右孩子前面被访问,
左孩子和右孩子都在根结点前面被访问。*/

//二叉树BFS
vector<vector<int>> binaryBFS(binNode* root){
    vector<vector<int>> res;
    if(root == nullptr){
        return res;
    }
    queue<binNode*> q;
    q.push(root);
    while(!q.empty()){
        int len = q.size();
        vector<int> tmp;
        for(int i = 0;i < len;++i){
            binNode* cur = q.front();
            tmp.push_back(cur->val);
            q.pop();
            if(cur->left){
                q.push_back(cur->left);
            }
            if(cur->right){
                q.push_back(cur->right);
            }
        res.push_back(tmp);
        }        
    }
    return res;    
}

2、堆排序

//heapsort

void siftdown(vector<int>& v,int i,int sz){
    int largest = i;
    int l = 2 * i + 1;
    int r = 2 * i + 2;
    
    if(l < sz && v[l] > v[largest]){
        largest = l;
    }
    if(r < sz && v[r] > v[largest]){
        largest = r;
    }
    if(largest != i){
        swap(v[i],v[largest]);
        siftdown(v,largest,sz);
    }
    
}

void heapsort(vector<int> &v){
    if(v.empty()){
        return;
    }
    for(int i = v.size() / 2;i >= 0;--i){
        siftdown(v,i,v.size());
    }
    for(int i = v.size() - 1;i >= 0;--i){
        swap(v[0],v[i]);
        siftdown(v,0,i);
    }
    
}

 循环版本:

void siftdown(vector<int>& A, int i, int n) {
        while (1) {
            int l = 2 * i + 1;
            int r = 2 * i + 2;
            int smallest = i;
            if (l < n && A[l] < A[smallest]) {
                smallest = l;
            }
            if (r < n && A[r] < A[smallest]) {
                smallest = r;
            }
            if (smallest != i) {
                swap(A[i], A[smallest]);
                i = smallest;
                //siftdown(A, smallest, n);
            }  
            else {
                break;
            }
        }

    }
循环版本

 

3、strcpy,memcpy,memmove

https://www.cnblogs.com/chenyg32/p/3739564.html

 

//strcpy(现实版本没有内存检查)
char* myStrcpy(char* dst,const char* src){
    assert((dst != NULL) &&(src != NULL));
    char* res = dst;
    while((*dst++ = *src++) != '\0');
    return res;    
}

//memcpy(现实版本没有内存检查)

void* memcpy(void* dst,const void* src,size_t num){
    assert((dst != NULL) && (src != NULL));
    char* pdst = (char*)dst;
    const char* psrc = (const char*)src;
    if(pdst > psrc){
        for(size_t i = num - 1;i >= 0;--i){
            *pdst = *psrc;
        }
    }
    else{
        for(size_t i = 0;i < num;++i){
            *pdst = *psrc;
        }
    }
    return dst;
}

//memmove(现实版本有内存检查)

//strStr 找到target在source中出现的问题

int strStr(const char* src,const char* tar){
    if(src == nullptr || tar == nullptr){
        return -1;
    }
    int srcLen = strlen(src);
    int tarLen = strlen(tar);
    
    for(int i = 0;i < srcLen - tarLen;++i){
        in j = 0;
        for(j = 0;j < tarlen;++j){
            if(src[i + j] != tar[j]){
                break;
            }
        }
        if(j == tarLen){
            return i;
        }
    }
    return -1;    
}

 strcpy函数的实现

 

char *my_memcpy(char *dst, const char* src, int cnt)
{
    assert(dst != NULL && src != NULL);

    char *ret = dst; 

    if (dst >= src && dst <= src+cnt-1) //内存重叠,从高地址开始复制
    {
        dst = dst+cnt-1;
        src = src+cnt-1;
        while (cnt--)
            *dst-- = *src--;
    }
    else    //正常情况,从低地址开始复制
    {
        while (cnt--)
            *dst++ = *src++;
    }
    
    return ret;
}

char * strcpy(char *dst,const char *src)
{
    assert(dst != NULL && src != NULL);

    char *ret = dst;

    my_memcpy(dst, src, strlen(src)+1);

    return ret;
}

 

 

 

 

posted @ 2018-03-16 09:50  zqlucky  阅读(289)  评论(0编辑  收藏  举报