4 重建二叉树

题目描述

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

 注意:举例子进行编程,注意边界情况,还有就是注意不要忘记递归基。

不要就举三个节点的例子,可以举七个节点的例子,得到前序和中序遍历。

4,3,1,2,5,6,7

1,3,2,4,6,5,7

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* helper(vector<int> &pre,int preBegin,int preEnd,vector<int> &vin,int vinBegin,int vinEnd){
        if(preBegin > preEnd || vinBegin > vinEnd){
            return nullptr;
        }
        TreeNode* root = new TreeNode(pre[preBegin]);
        //find left
        int i = 0;
        for(i = vinBegin;i <= vinEnd;++i){
            if(vin[i] == root -> val){
                break;
            }
        }
        root -> left = helper(pre,preBegin + 1,preBegin + i - vinBegin,vin,vinBegin,i - 1);
        root -> right = helper(pre,preBegin + i - vinBegin + 1,preEnd,vin,i + 1,vinEnd);
        return root;
    }
    
    TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
        if(pre.size() == 0){
            return nullptr;
        }
        TreeNode* root = helper(pre,0,pre.size() - 1,vin,0,vin.size() - 1);
        return root;
    }
};

 

 

拷贝数组的效率太低,不要看了。

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
        if(pre.size() != vin.size()){
            return nullptr;
        }
        if(pre.size() == 0){//递归基
            return nullptr;
        }
        TreeNode* root = new TreeNode(pre[0]);
        vector<int> vin_left,vin_right,pre_left,pre_right;
        int pos = 0;
        for(pos;pos < vin.size();++pos){
            if(vin[pos] == root -> val){
                break;
            }
            vin_left.push_back(vin[pos]);
            pre_left.push_back(pre[pos + 1]);
        }
        pos++;
        for(pos;pos < vin.size();++pos){            
            vin_right.push_back(vin[pos]);
            pre_right.push_back(pre[pos]);
        }        
        root -> left = reConstructBinaryTree(pre_left,vin_left);
        root -> right = reConstructBinaryTree(pre_right,vin_right);
        return root;
    }
};

 

posted @ 2017-11-22 22:17  zqlucky  阅读(243)  评论(0编辑  收藏  举报