POJ 1180 - Batch Scheduling - [斜率DP]
题目链接:http://poj.org/problem?id=1180
Description
A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.
You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.
Input
Output
Sample Input
5 1 1 3 3 2 4 3 2 3 1 4
Sample Output
153
题意:
有N个工作排成一个序列,分别编号为1,2,3,…,N;
这些工作,被分成若干批("one or more"),并且满足:
- 每一批内的工作编号是连续的,机器处理“批(batchs)”的顺序按照序列的顺序来
- 处理一批所用时间为:预处理时间(setup time)S + 处理包内每个工作所耗时间之和
- 对于一个工作,它的完成时间O[i] = 开始处理它所在批的时刻t + S + 处理包内每个工作所耗时间之和
- 机器处理完一批,就立即同时输出该批内所有工作的结果
对于每个工作我们知道:
- 处理这项工作所耗时间T[i]
- 成本因子F[i](对于每项工作,它所要耗费的成本为O[i]*F[i])
现在要求,找到一个工作划分方案,使得成本耗费最少,输出该成本耗费。
题解:
设dp[i]代表从第i项工作到第N项工作需要耗费的最小成本;
设 $ {\rm{Tsum}}\left[ i \right] = \sum\limits_{k = i}^N {{\rm{T}}\left[ k \right]} {\rm{,}}\;\;{\rm{Fsum}}\left[ i \right] = \sum\limits_{k = i}^N {{\rm{F}}\left[ k \right]} $ ;
状态转移方程为:dp[i] = min{ dp[k] + ( S + Tsum[i] - Tsum[k] ) * Fsum[i] },i<k≤N
也就是说执行第k个batch的花费,看成不只包括第k个batch内所有工作的成本花费,同时还包括因执行第k个batch而延迟执行后续其他batch所增加的成本耗费。
那么对于计算dp[i]时中k可能选择的两个点a,b(i<a<b≤N),若有:
dp[b] + ( S + Tsum[i] - Tsum[b] ) * Fsum[i] ≤ dp[a] + ( S + Tsum[i] - Tsum[a] ) * Fsum[i]
则可以说b点优于a点;
对上式变形可得:
( dp[a] - dp[b] ) / ( Tsum[a] - Tsum[b] ) ≥ Fsum[i]
设g(a,b) = ( dp[a] - dp[b] ) / ( Tsum[a] - Tsum[b] ),则有
b点优于a点 <=> g(a,b) ≥ Fsum[i];
b点劣于a点 <=> g(a,b) < Fsum[i];
另外还有g(a,b) ≥ g(b,c),b必然被淘汰。
然后就可以进行斜率DP优化了(具体怎么优化参考之前的几篇文章HDU3507,HDU2993,HDU2829)。
AC代码:
#include<iostream> #include<cstdio> using namespace std; const int maxn=10000+5; int N,S; int T[maxn],F[maxn]; int Tsum[maxn],Fsum[maxn]; int dp[maxn]; int q[maxn],head,tail; double g(int a,int b) { return double(dp[a]-dp[b])/double(Tsum[a]-Tsum[b]); } int main() { scanf("%d%d",&N,&S); for(int i=1;i<=N;i++) scanf("%d%d",&T[i],&F[i]); Tsum[N+1]=Fsum[N+1]=0; for(int i=N;i>=1;i--) Tsum[i]=Tsum[i+1]+T[i], Fsum[i]=Fsum[i+1]+F[i]; head=tail=0; q[tail++]=N+1; dp[N+1]=0; for(int i=N,a,b;i>=1;i--) { while(head+1<tail) { b=q[head], a=q[head+1]; if(g(a,b)<Fsum[i]) head++; else break; } int k=q[head]; dp[i]=dp[k]+(S+Tsum[i]-Tsum[k])*Fsum[i]; while(head+1<tail) { b=q[tail-2], a=q[tail-1]; if(g(a,b)>=g(b,i)) tail--; else break; } q[tail++]=i; } printf("%d\n",dp[1]); }