UVA 11168 - Airport - [凸包基础题]
题目链接:https://cn.vjudge.net/problem/UVA-11168
题意:
给出平面上的n个点,求一条直线,使得所有的点在该直线的同一侧(可以在该直线上),并且所有点到该直线的距离和最小,输出该距离除以n;
题解:
显然最好能让越多的点在这条直线上就越好,但又要所有点满足在同侧,则显然要选取某条凸包边界所在直线作为ans;
求出凸包后,遍历每条凸包边,求出所有点到这条直线的距离和,找到最小的即可。
AC代码:
#include<bits/stdc++.h> #define MAX 10005 using namespace std; //--------------------------------------计算几何模板 - st-------------------------------------- const double eps = 1e-6; struct Point{ double x,y; Point(double tx=0,double ty=0):x(tx),y(ty){} }; typedef Point Vctor; //向量的加减乘除 Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);} Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);} Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);} Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);} bool operator < (Point A,Point B){return A.x < B.x || (A.x == B.x && A.y < B.y);} struct Line{ Point p; Vctor v; Line(Point p=Point(0,0),Vctor v=Vctor(0,0)):p(p),v(v){} Point point(double t){return p + v*t;} //获得直线上的距离p点t个单位长度的点 }; struct Circle{ Point c; double r; Circle(Point tc=Point(0,0),double tr=0):c(tc),r(tr){} Point point(double a){return Point( c.x + cos(a)*r , c.y + sin(a)*r);} }; int dcmp(double x) { if(fabs(x)<eps) return 0; else return (x<0)?(-1):(1); } bool operator == (Point A,Point B){return dcmp(A.x-B.x)==0 && dcmp(A.y-B.y)==0;} //向量的点积,长度,夹角 double Dot(Vctor A,Vctor B){return A.x*B.x+A.y*B.y;} double Length(Vctor A){return sqrt(Dot(A,A));} double Angle(Vctor A,Vctor B){return acos(Dot(A,B)/Length(A)/Length(B));} //叉积,三角形面积 double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;} double TriangleArea(Point A,Point B,Point C){return Cross(B-A,C-A);} //向量的旋转,求向量的单位法线(即左转90度,然后长度归一) Vctor Rotate(Vctor A,double rad){return Vctor( A.x*cos(rad) - A.y*sin(rad) , A.x*sin(rad) + A.y*cos(rad) );} Vctor Normal(Vctor A) { double L = Length(A); return Vctor(-A.y/L, A.x/L); } //直线的交点 Point getLineIntersection(Line L1,Line L2) { Vctor u = L1.p-L2.p; double t = Cross(L2.v,u)/Cross(L1.v,L2.v); return L1.p + L1.v*t; } //点到直线的距离 double DistanceToLine(Point P,Line L) { return fabs(Cross(P-L.p,L.v))/Length(L.v); } //点到线段的距离 double DistanceToSegment(Point P,Point A,Point B) { if(A==B) return Length(P-A); Vctor v1 = B-A, v2 = P-A, v3 = P-B; if (dcmp(Dot(v1,v2)) < 0) return Length(v2); else if (dcmp(Dot(v1,v3)) > 0) return Length(v3); else return fabs(Cross(v1,v2))/Length(v1); } //点到直线的映射 Point getLineProjection(Point P,Line L) { return L.v + L.v*Dot(L.v,P-L.p)/Dot(L.v,L.v); } //判断线段是否规范相交 bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2) { double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1), c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1,a2 - b1); return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; } //判断点是否在一条线段上 bool OnSegment(Point P,Point a1,Point a2) { return dcmp(Cross(a1 - P,a2 - P))==0 && dcmp(Dot(a1 - P,a2 - P))<0; } //多边形面积 double PolgonArea(Point *p,int n) { double area=0; for(int i=1;i<n-1;i++) area += Cross( p[i]-p[0] , p[i + 1]-p[0] ); return area/2; } //判断圆与直线是否相交以及求出交点 int getLineCircleIntersection(Line L,Circle C,vector<Point> &sol) { double t1,t2; double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y; double e = a*a + c*c , f = 2*(a*b + c*d), g = b*b + d*d - C.r*C.r; double delta = f*f - 4.0*e*g; if(dcmp(delta)<0) return 0; else if(dcmp(delta)==0) { t1 = t2 = -f/(2.0*e); sol.push_back(L.point(t1)); return 1; } else { t1 = (-f-sqrt(delta))/(2.0*e); sol.push_back(L.point(t1)); t2 = (-f+sqrt(delta))/(2.0*e); sol.push_back(L.point(t2)); return 2; } } //判断并求出两圆的交点 double angle(Vctor v){return atan2(v.y,v.x);} int getCircleIntersection(Circle C1,Circle C2,vector<Point> &sol) { double d = Length(C1.c - C2.c); //圆心重合 if(dcmp(d)==0) { if(dcmp(C1.r-C2.r)==0) return -1; //两圆重合 else return 0; //包含关系 } //圆心不重合 if(dcmp(C1.r+C2.r-d)<0) return 0; // 相离 if(dcmp(fabs(C1.r-C2.r)-d)>0) return 0; // 包含 double a = angle(C2.c - C1.c); double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d)); Point p1 = C1.point(a - da), p2 = C1.point(a + da); sol.push_back(p1); if(p1==p2) return 1; sol.push_back(p2); return 2; } //求点到圆的切线 int getTangents(Point p,Circle C,vector<Line> &sol) { Vctor u=C.c-p; double dis=Length(u); if(dis<C.r) return 0; else if(dcmp(dis-C.r) == 0) { sol.push_back(Line(p,Rotate(u,M_PI/2))); return 1; } else { double ang=asin(C.r/dis); sol.push_back(Line(p,Rotate(u,-ang))); sol.push_back(Line(p,Rotate(u,ang))); return 2; } } //求两圆的切线 int getCircleTangents(Circle A,Circle B,Point *a,Point *b) { int cnt = 0; if(A.r<B.r){swap(A,B);swap(a,b);} //圆心距的平方 double d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B.c.y)*(A.c.y - B.c.y); double rdiff = A.r - B.r; double rsum = A.r + B.r; double base = angle(B.c - A.c); //重合有无限多条 if(d2 == 0 && dcmp(A.r - B.r) == 0) return -1; //内切 if(dcmp(d2-rdiff*rdiff) == 0) { a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++; return 1; } //有外公切线 double ang = acos((A.r - B.r) / sqrt(d2)); a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++; a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++; //一条内切线 if(dcmp(d2-rsum*rsum) == 0) { a[cnt] = A.point(base); b[cnt] = B.point(M_PI + base); cnt++; }//两条内切线 else if(dcmp(d2-rsum*rsum) > 0) { double ang = acos((A.r + B.r) / sqrt(d2)); a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++; a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++; } return cnt; } //--------------------------------------计算几何模板 - ed-------------------------------------- Point p[MAX]; bool cmp(Point p1,Point p2) { double tmp=Cross(p1-p[0],p2-p[0]); if(!dcmp(tmp)) return Length(p1-p[0])<Length(p2-p[0]); else return tmp>0; } vector<Point> graham_scan(int n) { vector<Point> ans; int idx=0; for(int i=1;i<n;i++)//选出Y坐标最小的点,若Y坐标相等,选择X坐标小的点 { if(p[i].y<p[idx].y || (p[i].y == p[idx].y && p[i].x < p[idx].x)) idx=i; } swap(p[0],p[idx]); sort(p+1,p+n,cmp); for(int i=0;i<=2;i++) ans.push_back(p[i]); int top=2; for(int i=3;i<n;i++) { while(top>0 && Cross(p[i]-ans[top-1],ans[top]-ans[top-1]) >= 0) { ans.pop_back(); top--; } ans.push_back(p[i]); top++; } return ans; } int n; int main() { int t; scanf("%d",&t); for(int kase=1;kase<=t;kase++) { scanf("%d",&n); for(int i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); vector<Point> ans=graham_scan(n); double mini=0x3f3f3f3f; for(int i=0;i<ans.size();i++) { Point& p1 = ans[i]; Point& p2 = (i==ans.size()-1)?ans[0]:ans[i+1]; double dist=0; for(int i=0;i<n;i++) dist+=DistanceToLine(p[i],Line(p1,p2-p1)); if(dist<mini) mini=dist; } printf("Case #%d: %.3lf\n",kase,mini/(1.0*n)); } }
PS.为保证跟前面的计算几何模板一致性,就把整个模板都copy了。
转载请注明出处:https://dilthey.cnblogs.com/