NEFU 118 - n!后面有多少个0 & NEFU 119 - 组合素数 - [n!的素因子分解]
首先给出一个性质:
n!的素因子分解中的素数p的幂为:[ n / p ] + [ n / p² ] + [ n / p³ ] + ……
举例证明:
例如我们有10!,我们要求它的素因子分解中2的幂;
那么,根据公式有 [ 10 / 2 ] + [ 10 / 4 ] + [ 10 / 8 ] (后面例如[10/16]之类的都为0);
显然[ 10 / 2 ] = 5,代表了从1~10中有几个数是2的倍数:2,4,6,8,10;它们每个数都为10!提供了1个2;
之后[ 10 / 4 ] = 2,代表了从1~10中有几个数是4的倍数:4,8;那加上这两个数是为什么呢?因为在前面已经提供了5个2的基础上,4和8可以各再多提供1个2;
[ 10 / 8 ] = 1,代表了从1~10中有几个数是8的倍数:8;因为同样的,在前面的基础上,8又可以再提供一个2;
这样,可以说这个公式为什么是这样的,已经很明显了;
然后开始看题目:
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=118
Time Limit:1000ms Memory Limit:65536K
Description
从输入中读取一个数n,求出n!中末尾0的个数。
Input
输入有若干行。第一行上有一个整数m,指明接下来的数字的个数。然后是m行,每一行包含一个确定的正整数n,1<=n<=1000000000。
Output
对输入行中的每一个数据n,输出一行,其内容是n!中末尾0的个数。
Sample Input
3 3 100 1024
Sample Output
0 24 253
题解:
显然的,这样的数据范围下,我们不可能直接算出n!等于多少,那么我们就要来考虑n!的因式分解;
由于我们要求n!的末尾有多少个0,不难想到每个0都代表了n!的素因子中有一个2和一个5,这样才能产生一个10,进而在末尾产生一个0;
那么,我们要根据上面的定理,有:
f(2) = [ n / 2 ] + [ n / 4 ] + [ n / 8 ] + ……
f(5) = [ n / 5 ] + [ n / 25 ] + [ n / 125 ] + ……
显然,对于[ n / p^k ],不管k有多大,[ n / p ^ k ]都始终大于等于零;
显然,f(2)的项数应该要不会少于f(5),同时[ n / 2^k ]与不会小于[ n / 5^k ];
所以,n!的素因子分解式中,2的幂次数肯定多多于5的幂次数,这样,我们就可以转化为求n!的素因子分解中5的幂次数为多少;
那么,根据公式,就不难得到答案;
AC代码:
1 #include<cstdio> 2 int n,ans; 3 int main() 4 { 5 int t; 6 scanf("%d",&t); 7 while(t--) 8 { 9 scanf("%d",&n); 10 ans=0; 11 for(int i=n/5;i>0;i/=5) ans+=i; 12 printf("%d\n",ans); 13 } 14 }
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=119
Time Limit:1000ms Memory Limit:65536K
Description
小明的爸爸从外面旅游回来给她带来了一个礼物,小明高兴地跑回自己的房间,拆开一看是一个很大棋盘(非常大),小明有所失望。不过没过几天发现了大棋盘的好玩之处。从起点(0,0)走到终点(n,n)的非降路径数是C(2n,n),现在小明随机取出1个素数p, 他想知道C(2n,n)恰好被p整除多少次?小明想了很长时间都没想出来,现在想请你帮助小明解决这个问题,对于你来说应该不难吧!
Input
有多组测试数据。 第一行是一个正整数T,表示测试数据的组数。接下来每组2个数分别是n和p的值,这里1<=n,p<=1000000000。
Output
对于每组测试数据,输出一行,给出C(2n,n)被素数p整除的次数,当整除不了的时候,次数为0。
Sample Input
2 2 2 2 3
Sample Output
1 1
题解:
依然是使用上面那个定理的题目;
那么如何求得a和b呢?
显然,根据上面的公式,就有:
a = [ 2n / p ] + [ 2n / p² ] + [ 2n / p³ ] + ……
b = [ n / p ] + [ n / p² ] + [ n / p³ ] + ……
最后输出的答案就是a-2*b;
AC代码:
1 #include<cstdio> 2 typedef long long ll; 3 ll n,p; 4 ll calc(ll n,ll p) 5 { 6 ll cnt=0; 7 for(ll i=n/p;i>0;i/=p) cnt+=i; 8 return cnt; 9 } 10 int main() 11 { 12 int t; 13 scanf("%d",&t); 14 while(t--) 15 { 16 scanf("%lld%lld",&n,&p); 17 printf("%lld\n",calc(2*n,p)-2*calc(n,p)); 18 } 19 }