Processing math: 100%

Codeforces 977F - Consecutive Subsequence - [map优化DP]

题目链接:http://codeforces.com/problemset/problem/977/F

 

题意:

给定一个长度为 n 的整数序列 a[1n],要求你找到一个它最长的一个子序列,该子序列满足单调连续递增。

子序列可以不连续,单调连续递增即例如 [4,5,6,7] 或者 [6,7,8,9,10] 这样的。

 

题解:

f[i] 表示以 a[i] 为结尾的最长连续递增子序列,那么要转移就需要找到 [1,i1] 这个区间内,某个满足 a[j]=a[i]1 的最大的 f[j],转移得到 f[i]=f[j]+1

这样一来,暴力地找的话时间复杂度是 O(n2),用map优化一下,mp[x] 维护所有 a[i]=xf[i] 的最大值,同时存下这个位置 i,即可做到 O(nlogn) 的转移,并且还可以逆向的找到转移到答案的整个过程。

 

AC代码:

复制代码
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> P;
#define mk(x,y) make_pair(x,y)
#define fi first
#define se second
const int maxn=2e5+10;
int n,a[maxn];
int f[maxn],pre[maxn];
map<int,P> mp;
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);

    for(int i=1;i<=n;i++)
    {
        int x=a[i]-1;
        if(!mp.count(x)) f[i]=1, pre[i]=0;
        else f[i]=mp[x].fi+1, pre[i]=mp[x].se;
        if(mp[a[i]].fi<f[i]) mp[a[i]]=mk(f[i],i);
    }

    int idx=1;
    for(int i=1;i<=n;i++) if(f[i]>f[idx]) idx=i;
    printf("%d\n",f[idx]);
    vector<int> ans;
    while(idx) ans.push_back(idx), idx=pre[idx];
    for(int i=ans.size()-1;i>=0;i--) printf("%d ",ans[i]);
}
复制代码

 

posted @   Dilthey  阅读(409)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示