[LeetCode] Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
方法一:
数组f,f[i,j] 表示从(0,0)到(i,j)的路径最小和,然后比较最后一行的最小值。top to down方法
1 class Solution { 2 public: 3 // form top to down 4 int minimumTotal(vector<vector<int> > &triangle) { 5 6 size_t rowNum = triangle.size(); 7 if(rowNum == 0) 8 return 0; 9 10 vector<vector<int> >f(rowNum); 11 12 for(size_t i = 0 ; i< rowNum; i++) 13 { 14 f[i].resize(i+1, 0); 15 } 16 17 for(size_t i = 0 ; i< rowNum; i++) 18 { 19 //printVector(triangle[i]); 20 } 21 22 23 f[0][0] = triangle[0][0]; 24 for(size_t i = 1 ; i< rowNum; i++) 25 { 26 for(size_t j = 0; j <= i; j++) 27 { 28 if(j == 0) 29 f[i][j] = f[i-1][j] + triangle[i][j]; 30 else if(j == i) 31 f[i][j] = f[i-1][j-1] + triangle[i][j]; 32 else 33 { 34 int a = INT_MAX; 35 if(i-1 >= 0 && j-1 >= 0 && j <= i) 36 a = f[i-1][j-1]; 37 int b = INT_MAX; 38 if(i-1 >= 0 && j >= 0 && j <= i-1) 39 b = f[i-1][j]; 40 f[i][j] = min(a, b) + triangle[i][j]; 41 } 42 } 43 } 44 45 int res = INT_MAX; 46 for(size_t i = 0 ; i< rowNum; i++) 47 { 48 // printVector(f[i]); 49 res = min(res, f[rowNum-1][i]); 50 } 51 52 return res; 53 } 54 };
方法二:
bottom up方法,少了很多边界判断,f也可以只保留一行,随时更新
1 int minimumTotal(vector<vector<int> > &triangle) { 2 3 size_t rowNum = triangle.size(); 4 if(rowNum == 0) 5 return 0; 6 7 vector<vector<int> >f(rowNum); 8 9 for(size_t i = 0 ; i< rowNum; i++) 10 { 11 f[i].resize(i+1, 0); 12 } 13 14 for(size_t i = 0 ; i< rowNum; i++) 15 { 16 f[rowNum-1][i] = triangle[rowNum-1][i]; 17 } 18 19 for(size_t i = rowNum-2 ; i >= 0; i--) 20 { 21 for(size_t j = 0; j <= i; j++) 22 { 23 int a = f[i+1][j]; 24 int b = f[i+1][j+1]; 25 f[i][j] = min(a, b) + triangle[i][j]; 26 } 27 } 28 29 return f[0][0]; 30 }
方法三: 在原地的数组进行运算,节省了空间
1 class Solution { 2 public: 3 int minimumTotal(vector<vector<int> > &f) { 4 5 size_t rowNum = f.size(); 6 7 8 for(size_t i = rowNum-2 ; i >= 0; i--) 9 { 10 for(size_t j = 0; j <= i; j++) 11 { 12 13 int a = f[i+1][j]; 14 int b = f[i+1][j+1]; 15 f[i][j] = min(a, b) + f[i][j]; 16 } 17 } 18 19 return f[0][0]; 20 } 21 }