[LeetCode] Search a 2D Matrix
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
方法一:
首先要找到target处于的行,即在所有行的第一元素中找第一个比target小的元素。
// 注意,此处mid= (low+high+1)/2, 不是 mid = (low+high)/2
// 原因是此处要找的是第一个比target小的数,当array[mid] < target 时,low =mid,
// low仍然在我们的搜索范围之中,我们让high逐渐比较low。
// 举例,array={2,5}, low=0,high=1,target=3,
// 如果mid = (low+high)/2就会进入死循环,我们要让mid更接近high
// 如果要找的是第一个比target大的数,则使用mid = (low+high)/2,可以参考我自己写的upper_bound函数
1 class Solution 2 { 3 public: 4 bool searchMatrix(vector<vector<int> > &matrix, int target) 5 { 6 int rowNum = matrix.size(); 7 int colNum = matrix[0].size(); 8 9 int rowLow = 0; 10 int rowHigh = rowNum - 1; 11 12 // step1. 找到合适的行,找到比某行的第一个元素比target小的那一行 13 while(rowLow < rowHigh) 14 { 15 // 注意,此处mid= (low+high+1)/2, 不是 mid = (low+high)/2 16 // 原因是此处要找的是第一个比target小的数,当array[mid] < target 时,low =mid, 17 // low仍然在我们的搜索范围之中,我们让high逐渐比较low。 18 // 举例,array={2,5}, low=0,high=1,target=3, 19 // 如果mid = (low+high)/2就会进入死循环,我们要让mid更接近high 20 // 如果要找的是第一个比target大的数,则使用mid = (low+high)/2,可以我的参考upper_bound函数 21 int mid = (rowLow + rowHigh + 1)/2; 22 if(matrix[mid][0] == target) 23 return true; 24 if(matrix[mid][0] < target) 25 rowLow = mid ; 26 else 27 rowHigh = mid - 1 ; 28 29 } 30 31 //step2. 在行内二分 32 int colLow = 0; 33 int colHigh = colNum - 1; 34 while(colLow <= colHigh) 35 { 36 int mid = (colLow + colHigh)/2; 37 if(matrix[rowLow][mid] == target) 38 return true; 39 if(target > matrix[rowLow][mid] ) 40 colLow = mid + 1; 41 else 42 colHigh = mid - 1; 43 44 } 45 return false; 46 47 48 } 49 };
方法二:将matrxi当成一个有序的大数组,直接二分法,只是计算出的mid要换算成行和列
1 class Solution 2 { 3 public: 4 bool searchMatrix(vector<vector<int> > &matrix, int target) 5 { 6 7 int rowNum = matrix.size(); 8 int colNum = matrix[0].size(); 9 10 int low = 0; 11 int high = rowNum * colNum - 1; 12 int mid = 0; 13 int row = 0, col = 0; 14 15 while(low <= high) 16 { 17 mid = (low + high) /2; 18 19 row = mid/colNum; 20 col = mid%colNum; 21 22 if(matrix[row][col] == target) 23 return true; 24 if(matrix[row][col] > target) 25 high = mid -1; 26 else 27 low = mid +1; 28 } 29 return false; 30 31 } 32 };