初学Kafka工作原理流程介绍
Apache kafka 工作原理介绍
-
消息队列技术是分布式应用间交换信息的一种技术。消息队列可驻留在内存或磁盘上, 队列存储消息直到它们被应用程序读走。通过消息队列,应用程序可独立地执行--它们不需要知道彼此的位置、或在继续执行前不需要等待接收程序接收此消息。在分布式计算环境中,为了集成分布式应用,开发者需要对异构网络环境下的分布式应用提供有效的通信手段。为了管理需要共享的信息,对应用提供公共的信息交换机制是重要的。常用的消息队列技术是 Message Queue。
-
Message Queue 的通讯模式
-
点对点通讯:点对点方式是最为传统和常见的通讯方式,它支持一对一、一对多、多对多、多对一等多种配置方式,支持树状、网状等多种拓扑结构。
-
多点广播:MQ 适用于不同类型的应用。其中重要的,也是正在发展中的是"多点广播"应用,即能够将消息发送到多个目标站点 (Destination List)。可以使用一条 MQ 指令将单一消息发送到多个目标站点,并确保为每一站点可靠地提供信息。MQ 不仅提供了多点广播的功能,而且还拥有智能消息分发功能,在将一条消息发送到同一系统上的多个用户时,MQ 将消息的一个复制版本和该系统上接收者的名单发送到目标 MQ 系统。目标 MQ 系统在本地复制这些消息,并将它们发送到名单上的队列,从而尽可能减少网络的传输量。
-
发布/订阅 (Publish/Subscribe) 模式:发布/订阅功能使消息的分发可以突破目的队列地理指向的限制,使消息按照特定的主题甚至内容进行分发,用户或应用程序可以根据主题或内容接收到所需要的消息。发布/订阅功能使得发送者和接收者之间的耦合关系变得更为松散,发送者不必关心接收者的目的地址,而接收者也不必关心消息的发送地址,而只是根据消息的主题进行消息的收发。
-
群集 (Cluster):为了简化点对点通讯模式中的系统配置,MQ 提供 Cluster(群集) 的解决方案。群集类似于一个域 (Domain),群集内部的队列管理器之间通讯时,不需要两两之间建立消息通道,而是采用群集 (Cluster) 通道与其它成员通讯,从而大大简化了系统配置。此外,群集中的队列管理器之间能够自动进行负载均衡,当某一队列管理器出现故障时,其它队列管理器可以接管它的工作,从而大大提高系统的高可靠性。
Kafka的基本术语和概念
- Kafka中有以下一些概念。
- Broker:任何正在运行中的Kafka示例都称为Broker。
- Topic:Topic其实就是一个传统意义上的消息队列。
- Partition:即分区。一个Topic将由多个分区组成,每个分区将存在独立的持久化文件,任何一个Consumer在分区上的消费一定是顺序的;当一个Consumer同时在多个分区上消费时,Kafka不能保证总体上的强顺序性(对于强顺序性的一个实现是Exclusive Consumer,即独占消费,一个队列同时只能被一个Consumer消费,并且从该消费开始消费某个消息到其确认才算消费完成,在此期间任何Consumer不能再消费)。
- Producer:消息的生产者。
- Consumer:消息的消费者。
- Consumer Group:即消费组。一个消费组是由一个或者多个Consumer组成的,对于同一个Topic,不同的消费组都将能消费到全量的消息,而同一个消费组中的Consumer将竞争每个消息(在多个Consumer消费同一个Topic时,Topic的任何一个分区将同时只能被一个Consumer消费)。
Kafka的特性
- 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作;
- 可扩展性:kafka集群支持热扩展;
- 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失;
- 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败);
- 高并发:支持数千个客户端同时读写;
- 支持实时在线处理和离线处理:可以使用Storm这种实时流处理系统对消息进行实时进行处理,同时还可以使用Hadoop这种批处理系统进行离线处理;
Kafka的Leader的选举机制
- Kafka的Leader是什么
- 首先Kafka会将接收到的消息分区(partition),每个主题(topic)的消息有不同的分区。这样一方面消息的存储就不会受到单一服务器存储空间大小的限制,另一方面消息的处理也可以在多个服务器上并行。
- 其次为了保证高可用,每个分区都会有一定数量的副本(replica)。这样如果有部分服务器不可用,副本所在的服务器就会接替上来,保证应用的持续性。
- 但是,为了保证较高的处理效率,消息的读写都是在固定的一个副本上完成。这个副本就是所谓的Leader,而其他副本则是Follower。而Follower则会定期地到Leader上同步数据。
- Leader选举
- 如果某个分区所在的服务器除了问题,不可用,kafka会从该分区的其他的副本中选择一个作为新的Leader。之后所有的读写就会转移到这个新的Leader上。现在的问题是应当选择哪个作为新的Leader。显然,只有那些跟Leader保持同步的Follower才应该被选作新的Leader。
- Kafka会在Zookeeper上针对每个Topic维护一个称为ISR(in-sync replica,已同步的副本)的集合,该集合中是一些分区的副本。只有当这些副本都跟Leader中的副本同步了之后,kafka才会认为消息已提交,并反馈给消息的生产者。如果这个集合有增减,kafka会更新zookeeper上的记录。
- 如果某个分区的Leader不可用,Kafka就会从ISR集合中选择一个副本作为新的Leader。
- 显然通过ISR,kafka需要的冗余度较低,可以容忍的失败数比较高。假设某个topic有f+1个副本,kafka可以容忍f个服务器不可用。
- 为什么不用少数服从多数的方法
- 少数服从多数是一种比较常见的一致性算法和Leader选举法。它的含义是只有超过半数的副本同步了,系统才会认为数据已同步;选择Leader时也是从超过半数的同步的副本中选择。这种算法需要较高的冗余度。譬如只允许一台机器失败,需要有三个副本;而如果只容忍两台机器失败,则需要五个副本。而kafka的ISR集合方法,分别只需要两个和三个副本。
- 如果所有的ISR副本都失败了怎么办
- 此时有两种方法可选,一种是等待ISR集合中的副本复活,一种是选择任何一个立即可用的副本,而这个副本不一定是在ISR集合中。这两种方法各有利弊,实际生产中按需选择。
- 如果要等待ISR副本复活,虽然可以保证一致性,但可能需要很长时间。而如果选择立即可用的副本,则很可能该副本并不一致。
kafka集群partition分布原理分析
- 在Kafka集群中,每个Broker都有均等分配Partition的Leader机会。
- 上述图Broker Partition中,箭头指向为副本,以Partition-0为例:broker1中parition-0为Leader,Broker2中Partition-0为副本。
- 上述图种每个Broker(按照BrokerId有序)依次分配主Partition,下一个Broker为副本,如此循环迭代分配,多副本都遵循此规则。
- 副本分配算法如下:
- 将所有N Broker和待分配的i个Partition排序.
- 将第i个Partition分配到第(i mod n)个Broker上.
- 将第i个Partition的第j个副本分配到第((i + j) mod n)个Broker上.
Zookeeper在kafka的作用
- 无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。
- Kafka使用zookeeper作为其分布式协调框架,很好的将消息生产、消息存储、消息消费的过程结合在一起。
- 同时借助zookeeper,kafka能够生产者、消费者和broker在内的所以组件在无状态的情况下,建立起生产者和消费者的订阅关系,并实现生产者与消费者的负载均衡。