贪心算法

定义:
    贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。
    即不从整体最优上加以考虑,它所做出的仅仅是在某种意义上的局部最优解。
    贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。
   贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性(即某个状态以后的过程不会影响以前的状态,只与当前状态有关。)

基本思路:
  
  • 建立数学模型来描述问题
  • 把求解的问题分成若干个子问题
  • 对每个子问题求解,得到子问题的局部最优解
  • 把子问题的解局部最优解合成原来问题的一个解

贪婪算法可解决的问题通常大部分都有如下的特性:

有一个以最优方式来解决的问题。为了构造问题的解决方案,有一个候选的对象的集合:比如不同面值的硬币。

⑴随着算法的进行,将积累起其它两个集合:一个包含已经被考虑过并被选出的候选对象,另一个包含已经被考虑过但被丢弃的候选对象。
⑵有一个函数来检查一个候选对象的集合是否提供了问题的解答。该函数不考虑此时的解决方法是否最优。
⑶还有一个函数检查是否一个候选对象的集合是可行的,也即是否可能往该集合上添加更多的候选对象以获得一个解。和上一个函数一样,此时不考虑解决方法的最优性。
⑷选择函数可以指出哪一个剩余的候选对象最有希望构成问题的解。
⑸最后,目标函数给出解的值。
⑹为了解决问题,需要寻找一个构成解的候选对象集合,它可以优化目标函数,贪婪算法一步一步的进行。起初,算法选出的候选对象的集合为空。接下来的每一步中,根据选择函数,算法从剩余候选对象中选出最有希望构成解的对象。如果集合中加上该对象后不可行,那么该对象就被丢弃并不再考虑;否则就加到集合里。每一次都扩充集合,并检查该集合是否构成解。如果贪婪算法正确工作,那么找到的第一个解通常是最优的。

上面的话总结一下就是自己决定一个策略,从一个集合里拿向另一个空集合里装,什么时候拿满了就搞定。

问题:

  • 不能保证求得的最后解是最佳的
  • 不能用来求最大值或最小值的问题
  • 只能求满足某些约束条件的可行解的范围

 

posted @   diameter  阅读(84)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具
点击右上角即可分享
微信分享提示