字典
Redis 的字典使用哈希表作为底层实现, 一个哈希表里面可以有多个哈希表节点, 而每个哈希表节点就保存了字典中的一个键值对。
typedef struct dictEntry { // 键 void *key; // 值 union { void *val; uint64_t u64; int64_t s64; } v; // 指向下个哈希表节点,形成链表 struct dictEntry *next; } dictEntry; typedef struct dict { // 类型特定函数 dictType *type; // 私有数据 void *privdata; // 哈希表 dictht ht[2]; // rehash 索引 // 当 rehash 不在进行时,值为 -1 int rehashidx; /* rehashing not in progress if rehashidx == -1 */ } dict; typedef struct dict { // 类型特定函数 dictType *type; // 私有数据 void *privdata; // 哈希表 dictht ht[2]; // rehash 索引 // 当 rehash 不在进行时,值为 -1 int rehashidx; /* rehashing not in progress if rehashidx == -1 */ } dict; typedef struct dictType { // 计算哈希值的函数 unsigned int (*hashFunction)(const void *key); // 复制键的函数 void *(*keyDup)(void *privdata, const void *key); // 复制值的函数 void *(*valDup)(void *privdata, const void *obj); // 对比键的函数 int (*keyCompare)(void *privdata, const void *key1, const void *key2); // 销毁键的函数 void (*keyDestructor)(void *privdata, void *key); // 销毁值的函数 void (*valDestructor)(void *privdata, void *obj); } dictType;
Redis 使用 MurmurHash2 算法来计算键的哈希值。
MurmurHash 算法最初由 Austin Appleby 于 2008 年发明, 这种算法的优点在于, 即使输入的键是有规律的, 算法仍能给出一个很好的随机分布性, 并且算法的计算速度也非常快。
MurmurHash 算法目前的最新版本为 MurmurHash3 , 而 Redis 使用的是 MurmurHash2 , 关于 MurmurHash 算法的更多信息可以参考该算法的主页: http://code.google.com/p/smhasher/ 。
Redis 的哈希表使用链地址法(separate chaining)来解决键冲突: 每个哈希表节点都有一个 next
指针, 多个哈希表节点可以用 next
指针构成一个单向链表, 被分配到同一个索引上的多个节点可以用这个单向链表连接起来, 这就解决了键冲突的问题。
因为 dictEntry
节点组成的链表没有指向链表表尾的指针, 所以为了速度考虑, 程序总是将新节点添加到链表的表头位置(复杂度为 O(1)), 排在其他已有节点的前面。
随着操作的不断执行, 哈希表保存的键值对会逐渐地增多或者减少, 为了让哈希表的负载因子(load factor)维持在一个合理的范围之内, 当哈希表保存的键值对数量太多或者太少时, 程序需要对哈希表的大小进行相应的扩展或者收缩。
扩展和收缩哈希表的工作可以通过执行 rehash (重新散列)操作来完成, Redis 对字典的哈希表执行 rehash 的步骤如下:
- 为字典的
ht[1]
哈希表分配空间, 这个哈希表的空间大小取决于要执行的操作, 以及ht[0]
当前包含的键值对数量 (也即是ht[0].used
属性的值):- 如果执行的是扩展操作, 那么
ht[1]
的大小为第一个大于等于ht[0].used * 2
的 2^n (2
的n
次方幂); - 如果执行的是收缩操作, 那么
ht[1]
的大小为第一个大于等于ht[0].used
的 2^n 。
- 如果执行的是扩展操作, 那么
- 将保存在
ht[0]
中的所有键值对 rehash 到ht[1]
上面: rehash 指的是重新计算键的哈希值和索引值, 然后将键值对放置到ht[1]
哈希表的指定位置上。 - 当
ht[0]
包含的所有键值对都迁移到了ht[1]
之后 (ht[0]
变为空表), 释放ht[0]
, 将ht[1]
设置为ht[0]
, 并在ht[1]
新创建一个空白哈希表, 为下一次 rehash 做准备。
当以下条件中的任意一个被满足时, 程序会自动开始对哈希表执行扩展操作:
- 服务器目前没有在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于
1
; - 服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令, 并且哈希表的负载因子大于等于
5
;
这个 rehash 动作并不是一次性、集中式地完成的, 而是分多次、渐进式地完成的。
这样做的原因在于, 如果 ht[0]
里只保存着四个键值对, 那么服务器可以在瞬间就将这些键值对全部 rehash 到 ht[1]
; 但是, 如果哈希表里保存的键值对数量不是四个, 而是四百万、四千万甚至四亿个键值对, 那么要一次性将这些键值对全部 rehash 到 ht[1]
的话, 庞大的计算量可能会导致服务器在一段时间内停止服务。
因此, 为了避免 rehash 对服务器性能造成影响, 服务器不是一次性将 ht[0]
里面的所有键值对全部 rehash 到 ht[1]
, 而是分多次、渐进式地将 ht[0]
里面的键值对慢慢地 rehash 到 ht[1]
。
以下是哈希表渐进式 rehash 的详细步骤:
- 为
ht[1]
分配空间, 让字典同时持有ht[0]
和ht[1]
两个哈希表。 - 在字典中维持一个索引计数器变量
rehashidx
, 并将它的值设置为0
, 表示 rehash 工作正式开始。 - 在 rehash 进行期间, 每次对字典执行添加、删除、查找或者更新操作时, 程序除了执行指定的操作以外, 还会顺带将
ht[0]
哈希表在rehashidx
索引上的所有键值对 rehash 到ht[1]
, 当 rehash 工作完成之后, 程序将rehashidx
属性的值增一。 - 随着字典操作的不断执行, 最终在某个时间点上,
ht[0]
的所有键值对都会被 rehash 至ht[1]
, 这时程序将rehashidx
属性的值设为-1
, 表示 rehash 操作已完成。
渐进式 rehash 的好处在于它采取分而治之的方式, 将 rehash 键值对所需的计算工作均滩到对字典的每个添加、删除、查找和更新操作上, 从而避免了集中式 rehash 而带来的庞大计算量。
因为在进行渐进式 rehash 的过程中, 字典会同时使用 ht[0]
和 ht[1]
两个哈希表, 所以在渐进式 rehash 进行期间, 字典的删除(delete)、查找(find)、更新(update)等操作会在两个哈希表上进行: 比如说, 要在字典里面查找一个键的话, 程序会先在 ht[0]
里面进行查找, 如果没找到的话, 就会继续到 ht[1]
里面进行查找, 诸如此类。
另外, 在渐进式 rehash 执行期间, 新添加到字典的键值对一律会被保存到 ht[1]
里面, 而 ht[0]
则不再进行任何添加操作: 这一措施保证了 ht[0]
包含的键值对数量会只减不增, 并随着 rehash 操作的执行而最终变成空表。
参考链接:
http://redisbook.com