synchronized原理
synchronized关键字是Java并发编程中非常重要的一个工具。它的主要目的是在同一时间只能允许一个线程去访问一段特定的代码,从而保护一些变量或者数据不会被其他线程所修改。
Synchronized的作用主要有三个:
原子性:确保线程互斥的访问同步代码;
可见性:保证共享变量的修改能够及时可见,其实是通过Java内存模型中的 “对一个变量unlock操作之前,必须要同步到主内存中;如果对一个变量进行lock操作,则将会清空工作内存中此变量的值,在执行引擎使用此变量前,需要重新从主内存中load操作或assign操作初始化变量值” 来保证的;
有序性:有效解决重排序问题,即 “一个unlock操作先行发生(happen-before)于后面对同一个锁的lock操作”;
synchronized底层语义原理
Java虚拟机中的同步(Synchronization)基于进入和退出管程(Monitor)对象实现,无论是显示同步(有明确的monitorenter和monitorexit指令,即同步代码块)还是隐式同步都是如此。在Java语言中,同步用的最多到地方可能是被synchronized修饰的同步方法。同步方法并不是由monitorenter和monitorexit指令来实现同步到,而是由方法调用指令读取运行时常量池中方法到ACC_SYNCHRONIZED标志来隐式实现的,关于这点,稍后分析。下面先来了解一个概念:Java对象头,这对深入理解synchronized实现原理非常关键。
理解Java对象头与Monitor
在JVM中,对象在内存中到布局分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding),如下:
HotSpot虚拟机的对象头(Object Header)包括两部分信息:
第一部分"Mark Word":用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等等.
第二部分"Klass Pointer":对象指向它的类的元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。(数组,对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是从数组的元数据中无法确定数组的大小。 )
Mark Word具体的定义可以参见hotspot代码jdk/src/hotspot/share/oops/markWord.hpp
// The markWord describes the header of an object. // // Bit-format of an object header (most significant first, big endian layout below): // // 32 bits: // -------- // hash:25 ------------>| age:4 biased_lock:1 lock:2 (normal object) // JavaThread*:23 epoch:2 age:4 biased_lock:1 lock:2 (biased object) // // 64 bits: // -------- // unused:25 hash:31 -->| unused_gap:1 age:4 biased_lock:1 lock:2 (normal object) // JavaThread*:54 epoch:2 unused_gap:1 age:4 biased_lock:1 lock:2 (biased object) // ............ // [JavaThread* | epoch | age | 1 | 01] lock is biased toward given thread // [0 | epoch | age | 1 | 01] lock is anonymously biased // // - the two lock bits are used to describe three states: locked/unlocked and monitor. // // [ptr | 00] locked ptr points to real header on stack // [header | 0 | 01] unlocked regular object header // [ptr | 10] monitor inflated lock (header is wapped out) // [ptr | 11] marked used to mark an object // [0 ............ 0| 00] inflating inflation in progress
各成员具体含义:
hash: 保存对象的哈希码
age: 保存对象的分代年龄
biased_lock: 偏向锁标识位
lock: 锁状态标识位
JavaThread*: 保存持有偏向锁的线程ID
epoch: 保存偏向时间戳
锁的标识位有如下几种
1 enum { locked_value = 0,//00 轻量级锁 2 unlocked_value = 1,//01 无锁 3 monitor_value = 2,//10 监视器锁,也叫膨胀锁,也叫重量级锁 4 marked_value = 3,//11 GC标记 5 biased_lock_pattern = 5 //101 偏向锁 6 };
不管是32/64位JVM,都是1bit偏向锁+2bit锁标志位。
在运行期间,Mark Word里存储的数据会随着锁标志位的变化而变化,以32位的JDK为例:
synchronized源码实现就用了Mark Word来标识对象加锁状态。
在jdk1.6中对锁的实现引入了大量的优化来减少锁操作的开销:
锁粗化(Lock Coarsening):将多个连续的锁扩展成一个范围更大的锁,用以减少频繁互斥同步导致的性能损耗。
锁消除(Lock Elimination):JVM及时编译器在运行时,通过逃逸分析,如果判断一段代码中,堆上的所有数据不会逃逸出去从来被其他线程访问到,就可以去除这些锁。
轻量级锁(Lightweight Locking):JDK1.6引入。在没有多线程竞争的情况下避免重量级互斥锁,只需要依靠一条CAS原子指令就可以完成锁的获取及释放。
偏向锁(Biased Locking):JDK1.6引入。目的是消除数据再无竞争情况下的同步原语。使用CAS记录获取它的线程。下一次同一个线程进入则偏向该线程,无需任何同步操作。
适应性自旋(Adaptive Spinning):为了避免线程频繁挂起、恢复的状态切换消耗。产生了忙循环(循环时间固定),即自旋。JDK1.6引入了自适应自旋。自旋时间根据之前锁自旋时间和线程状态,动态变化,用以期望能减少阻塞的时间。
锁升级:偏向锁--》轻量级锁--》重量级锁
偏向锁
HotSpot的作者经过研究发现,大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得。偏向锁是为了在只有一个线程执行同步块时提高性能。
当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单地测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径,因为轻量级锁的获取及释放依赖多次CAS原子指令,而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令(由于一旦出现多线程竞争的情况就必须撤销偏向锁,所以偏向锁的撤销操作的性能损耗必须小于节省下来的CAS原子指令的性能消耗)。
偏向锁获取过程:
(1)访问Mark Word中偏向锁的标识是否设置成1,锁标志位是否为01——确认为可偏向状态。
(2)如果为可偏向状态,则测试线程ID是否指向当前线程,如果是,进入步骤(5),否则进入步骤(3)。
(3)如果线程ID并未指向当前线程,则通过CAS操作竞争锁。如果竞争成功,则将Mark Word中线程ID设置为当前线程ID,然后执行(5);如果竞争失败,执行(4)。
(4)如果CAS获取偏向锁失败,则表示有竞争(CAS获取偏向锁失败说明至少有过其他线程曾经获得过偏向锁,因为线程不会主动去释放偏向锁)。当到达全局安全点(safepoint)时,会首先暂停拥有偏向锁的线程,然后检查持有偏向锁的线程是否活着(因为可能持有偏向锁的线程已经执行完毕,但是该线程并不会主动去释放偏向锁),如果线程不处于活动状态,则将对象头设置成无锁状态(标志位为“01”),然后重新偏向新的线程;如果线程仍然活着,撤销偏向锁后升级到轻量级锁状态(标志位为“00”),此时轻量级锁由原持有偏向锁的线程持有,继续执行其同步代码,而正在竞争的线程会进入自旋等待获得该轻量级锁。
(5)执行同步代码。
偏向锁的释放过程:
如上步骤(4)。偏向锁使用了一种等到竞争出现才释放偏向锁的机制:偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动去释放偏向锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有字节码正在执行),它会首先暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态,撤销偏向锁后恢复到未锁定(标志位为“01”)或轻量级锁(标志位为“00”)的状态。
关闭偏向锁:
偏向锁在Java 6和Java 7里是默认启用的。由于偏向锁是为了在只有一个线程执行同步块时提高性能,如果你确定应用程序里所有的锁通常情况下处于竞争状态,可以通过JVM参数关闭偏向锁:-XX:-UseBiasedLocking=false,那么程序默认会进入轻量级锁状态。
轻量级锁
轻量级锁是为了在线程近乎交替执行同步块时提高性能。
轻量级锁的加锁过程:
(1)在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态,是否为偏向锁为“0”),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为 Displaced Mark Word。
(2)拷贝对象头中的Mark Word复制到锁记录中。
(3)拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤(3),否则执行步骤(4)。
(4)如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00”,即表示此对象处于轻量级锁定状态。
(5)如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,若当前只有一个等待线程,则可通过自旋稍微等待一下,可能另一个线程很快就会释放锁。 但是当自旋超过一定的次数,或者一个线程在持有锁,一个在自旋,又有第三个来访时,轻量级锁膨胀为重量级锁,重量级锁使除了拥有锁的线程以外的线程都阻塞,防止CPU空转,锁标志的状态值变为“10”,Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。
轻量级锁的解锁过程:
- (1)通过CAS操作尝试把线程中复制的Displaced Mark Word对象替换当前的Mark Word。
- (2)如果替换成功,整个同步过程就完成了。
- (3)如果替换失败,说明有其他线程尝试过获取该锁(此时锁已膨胀),那就要在释放锁的同时,唤醒被挂起的线程。
重量级锁
如上轻量级锁的加锁过程步骤(5),轻量级锁所适应的场景是线程近乎交替执行同步块的情况,如果存在同一时间访问同一锁的情况,就会导致轻量级锁膨胀为重量级锁。Mark Word的锁标记位更新为10,Mark Word指向互斥量(重量级锁)
Synchronized的重量级锁是通过对象内部的一个叫做监视器锁(monitor)来实现的,监视器锁本质又是依赖于底层的操作系统的Mutex Lock(互斥锁)来实现的。而操作系统实现线程之间的切换需要从用户态转换到核心态,这个成本非常高,状态之间的转换需要相对比较长的时间,这就是为什么Synchronized效率低的原因。
具体步骤:
当锁升级为轻量级锁之后,如果依然有新线程过来竞争锁,首先新线程会自旋尝试获取锁,尝试到一定次数(默认10次)依然没有拿到,锁就会升级成重量级锁.
- 将 MonitorObject 中的 _owner设置成 A线程;
- 将 mark word 设置为 Monitor 对象地址,锁标志位改为10
- 将B线程阻塞放到 ContentionList 队列;
JVM 每次从Waiting Queue 的尾部取出一个线程放到OnDeck作为候选者,但是如果并发比较高,Waiting Queue会被大量线程执行CAS操作,为了降低对尾部元素的竞争,将Waiting Queue 拆分成ContentionList 和 EntryList 二个队列, JVM将一部分线程移到EntryList 作为准备进OnDeck的预备线程。另外说明几点:
所有请求锁的线程首先被放在ContentionList这个竞争队列中;
Contention List 中那些有资格成为候选资源的线程被移动到 Entry List 中;
任意时刻,最多只有一个线程正在竞争锁资源,该线程被成为 OnDeck;
当前已经获取到所资源的线程被称为 Owner;
处于 ContentionList、EntryList、WaitSet 中的线程都处于阻塞状态,该阻塞是由操作系统来完成的(Linux 内核下采用 pthread_mutex_lock
内核函数实现的);
作为Owner 的A 线程执行过程中,可能调用wait 释放锁,这个时候A线程进入 Wait Set , 等待被唤醒。
偏向所锁,轻量级锁都是乐观锁,重量级锁是悲观锁。
- 一个对象刚开始实例化的时候,没有任何线程来访问它的时候。它是可偏向的,意味着,它现在认为只可能有一个线程来访问它,所以当第一个线程来访问它的时候,它会偏向这个线程,此时,对象持有偏向锁。偏向第一个线程,这个线程在修改对象头成为偏向锁的时候使用CAS操作,并将对象头中的ThreadID改成自己的ID,之后再次访问这个对象时,只需要对比ID,不需要再使用CAS在进行操作。
- 一旦有第二个线程访问这个对象,因为偏向锁不会主动释放,所以第二个线程可以看到对象时偏向状态,这时表明在这个对象上已经存在竞争了。检查原来持有该对象锁的线程是否依然存活,如果挂了,则可以将对象变为无锁状态,然后重新偏向新的线程。如果原来的线程依然存活,则马上执行那个线程的操作栈,检查该对象的使用情况,如果仍然需要持有偏向锁,则偏向锁升级为轻量级锁,(偏向锁就是这个时候升级为轻量级锁的),此时轻量级锁由原持有偏向锁的线程持有,继续执行其同步代码,而正在竞争的线程会进入自旋等待获得该轻量级锁;如果不存在使用了,则可以将对象回复成无锁状态,然后重新偏向。
- 轻量级锁认为竞争存在,但是竞争的程度很轻,一般两个线程对于同一个锁的操作都会错开,或者说稍微等待一下(自旋),另一个线程就会释放锁。 但是当自旋超过一定的次数,或者一个线程在持有锁,一个在自旋,又有第三个来访时,轻量级锁膨胀为重量级锁,重量级锁使除了拥有锁的线程以外的线程都阻塞,防止CPU空转。
参考链接
https://www.cnblogs.com/dennyzhangdd/p/6734638.html
https://www.cnblogs.com/wuzhenzhao/p/10250801.html
https://zhuanlan.zhihu.com/p/29866981
https://www.cnblogs.com/woshimrf/p/java-synchronized.html
《深入理解Java虚拟机》