题目描述
请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。
实现 LFUCache 类:
LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
int get(int key) - 如果键存在于缓存中,则获取键的值,否则返回 -1。
void put(int key, int value) - 如果键已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量时,则应该在插入新项之前,使最不经常使用的项无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最久未使用 的键。
注意「项的使用次数」就是自插入该项以来对其调用 get 和 put 函数的次数之和。使用次数会在对应项被移除后置为 0 。
为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。
当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 get 或 put 操作,使用计数器的值将会递增。
示例:
输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lFUCache = new LFUCache(2);
lFUCache.put(1, 1); // cache=[1,_], cnt(1)=1
lFUCache.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lFUCache.get(1); // 返回 1 // cache=[1,2], cnt(2)=1, cnt(1)=2
lFUCache.put(3, 3); // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小 // cache=[3,1], cnt(3)=1, cnt(1)=2
lFUCache.get(2); // 返回 -1(未找到)
lFUCache.get(3); // 返回 3 // cache=[3,1], cnt(3)=2, cnt(1)=2
lFUCache.put(4, 4); // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用 // cache=[4,3], cnt(4)=1, cnt(3)=2
lFUCache.get(1); // 返回 -1(未找到)
lFUCache.get(3); // 返回 3 // cache=[3,4], cnt(4)=1, cnt(3)=3
lFUCache.get(4); // 返回 4 // cache=[3,4], cnt(4)=2, cnt(3)=3
来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/lfu-cache
解题思路
一定先从最简单的开始,根据 LFU 算法的逻辑,我们先列举出算法执行过程中的几个显而易见的事实:
1、调用get(key)
方法时,要返回该key
对应的val
。
2、只要用get
或者put
方法访问一次某个key
,该key
的freq
就要加一。
3、如果在容量满了的时候进行插入,则需要将freq
最小的key
删除,如果最小的freq
对应多个key
,则删除其中最旧的那一个。
好的,我们希望能够在 O(1) 的时间内解决这些需求,可以使用基本数据结构来逐个击破:
1、使用一个HashMap
存储key
到val
的映射,就可以快速计算get(key)
。
2、使用一个HashMap
存储key
到freq
的映射,就可以快速操作key
对应的freq
。
3、这个需求应该是 LFU 算法的核心,所以我们分开说。
3.1、首先,肯定是需要freq
到key
的映射,用来找到freq
最小的key
。
3.2、将freq
最小的key
删除,那你就得快速得到当前所有key
最小的freq
是多少。想要时间复杂度 O(1) 的话,肯定不能遍历一遍去找,那就用一个变量minFreq
来记录当前最小的freq
吧。
3.3、可能有多个key
拥有相同的freq
,所以 freq
对key
是一对多的关系,即一个freq
对应一个key
的列表。
3.4、希望freq
对应的key
的列表是存在时序的,便于快速查找并删除最旧的key
。
3.5、希望能够快速删除key
列表中的任何一个key
,因为如果频次为freq
的某个key
被访问,那么它的频次就会变成freq+1
,就应该从freq
对应的key
列表中删除,加到freq+1
对应的key
的列表中。
介绍一下这个LinkedHashSet
,它满足我们 3.3,3.4,3.5 这几个要求。你会发现普通的链表LinkedList
能够满足 3.3,3.4 这两个要求,但是由于普通链表不能快速访问链表中的某一个节点,所以无法满足 3.5 的要求。
LinkedHashSet
顾名思义,是链表和哈希集合的结合体。链表不能快速访问链表节点,但是插入元素具有时序;哈希集合中的元素无序,但是可以对元素进行快速的访问和删除。
那么,它俩结合起来就兼具了哈希集合和链表的特性,既可以在 O(1) 时间内访问或删除其中的元素,又可以保持插入的时序,高效实现 3.5 这个需求。
综上,我们可以写出 LFU 算法的基本数据结构:
思路参考:https://labuladong.gitbook.io/algo/shu-ju-jie-gou-xi-lie/shou-ba-shou-she-ji-shu-ju-jie-gou/lfu