BN(Batch Normalization)

Batch Normalization是深度学习发展以来提出的最重要的成果之一了,目前已经被广泛的应用到了各大网络中,具有加速网络收敛速度,提升训练稳定性的效果,Batch Normalization本质上是解决反向传播过程中的梯度问题。Batch Normalization,简称BN,即批规范化,通过规范化操作将输出信号x规范化到均值为0,方差为1保证网络的稳定性。

  有一些从 0 到 1 而不是从 1 到 1000 的特征值,通过归一化所有的输入特征值𝑥,以获得类似范围的值,可以加速学习。所以 Batch 归一化起的作用的原因,直观的一点就是,它在做类似的工作,但不仅仅对于这里的输入值,还有隐藏单元的值。
  它可以使权重比你的网络更滞后或更深层,比如,第 10 层的权重更能经受得住变化。

 

1. 在神经网络的训练过程中,我们一般会将输入样本特征进行归一化处理,使数据变为均值为0,标准差为1的分布或者范围在0~1的分布。因为当我们没有将数据进行归一化的话,由于样本特征分布较散,可能会导致神经网络学习速度缓慢甚至难以学习。

2. 但是我们以前在神经网络训练中,只是对输入层数据进行归一化处理,却没有在中间层进行归一化处理。要知道,虽然我们对输入数据进行了归一化处理,但是输入数据经过σ(WX+b)σ(WX+b)这样的矩阵乘法以及非线性运算之后,其数据分布很可能被改变,而随着深度网络的多层运算之后,数据分布的变化将越来越大。如果我们能在网络的中间也进行归一化处理,是否对网络的训练起到改进作用呢?答案是肯定的。

  这种在神经网络中间层也进行归一化处理,使训练效果更好的方法,就是批归一化Batch Normalization(BN)。BN在神经网络训练中会有以下一些作用:

      加快训练速度
      可以省去dropout,L1, L2等正则化处理方法
      提高模型训练精度

3.

 

  

 

posted @ 2020-07-10 15:45  _Meditation  阅读(2540)  评论(0编辑  收藏  举报