pytorch之 optimizer comparison
1 import torch 2 import torch.utils.data as Data 3 import torch.nn.functional as F 4 import matplotlib.pyplot as plt 5 import torch.optim 6 # torch.manual_seed(1) # reproducible 7 8 LR = 0.01 9 BATCH_SIZE = 32 10 EPOCH = 12 11 12 # fake dataset 13 x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1) 14 y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) 15 16 # plot dataset 17 plt.scatter(x.numpy(), y.numpy()) 18 plt.show() 19 20 # put dateset into torch dataset 21 torch_dataset = Data.TensorDataset(x, y) 22 loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,) 23 24 25 # default network 26 class Net(torch.nn.Module): 27 def __init__(self): 28 super(Net, self).__init__() 29 self.hidden = torch.nn.Linear(1, 20) # hidden layer 30 self.predict = torch.nn.Linear(20, 1) # output layer 31 32 def forward(self, x): 33 x = F.relu(self.hidden(x)) # activation function for hidden layer 34 x = self.predict(x) # linear output 35 return x 36 37 if __name__ == '__main__': 38 # different nets 39 net_SGD = Net() 40 net_Momentum = Net() 41 net_RMSprop = Net() 42 net_Adam = Net() 43 nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] 44 45 # different optimizers 46 opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR) 47 opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8) 48 opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9) 49 opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99)) 50 optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] 51 52 loss_func = torch.nn.MSELoss() 53 losses_his = [[], [], [], []] # record loss 54 55 # training 56 for epoch in range(EPOCH): 57 print('Epoch: ', epoch) 58 for step, (b_x, b_y) in enumerate(loader): # for each training step 59 for net, opt, l_his in zip(nets, optimizers, losses_his): 60 output = net(b_x) # get output for every net 61 loss = loss_func(output, b_y) # compute loss for every net 62 opt.zero_grad() # clear gradients for next train 63 loss.backward() # backpropagation, compute gradients 64 opt.step() # apply gradients 65 l_his.append(loss.data.numpy()) # loss recoder 66 67 labels = ['SGD', 'Momentum', 'RMSprop', 'Adam'] 68 for i, l_his in enumerate(losses_his): 69 plt.plot(l_his, label=labels[i]) 70 plt.legend(loc='best') 71 plt.xlabel('Steps') 72 plt.ylabel('Loss') 73 plt.ylim((0, 0.2)) 74 plt.show()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)