spark Transformations算子
在java中,RDD分为javaRDDs和javaPairRDDs。下面分两大类来进行。
都必须要进行的一步。
1 2 | SparkConf conf = new SparkConf().setMaster( "local" ).setAppName( "test" ); JavaSparkContext sc = new JavaSparkContext(conf); |
一。javaRDDs
1 String[] ayys = {"a","b","c"}; 2 List<String> strings = Arrays.asList(ayys); 3 4 JavaRDD<String> rdd1 = sc.parallelize(strings); 5 strings.add("d"); 6 JavaRDD<String> rdd2 = sc.parallelize(strings); 7 8 9 JavaRDD<Tuple2<String, Integer>> parallelize = sc.parallelize(Arrays.asList( 10 new Tuple2<String, Integer>("asd", 11), 11 new Tuple2<String, Integer>("asd", 11), 12 new Tuple2<String, Integer>("asd", 11) 13 )); 14 15 rdd1.map(new Function<String, String>() { 16 public String call(String s) throws Exception { 17 return s.replace("a","qqq"); 18 } 19 }).foreach(new VoidFunction<String>() { 20 public void call(String s) throws Exception { 21 System.out.println(s); 22 } 23 }); 24 25 26 List<String> a = rdd1.filter(new Function<String, Boolean>() { 27 public Boolean call(String s) throws Exception { 28 return s.contains("a"); 29 } 30 }).collect(); 31 32 System.out.println(a); 33 34 JavaRDD<String> rdd22 = rdd1.flatMap(new FlatMapFunction<String, String>() { 35 public Iterable<String> call(String s) throws Exception { 36 return Arrays.asList(s.split(" ")); 37 } 38 }); 39 40 JavaPairRDD<String, Integer> rdd4 = rdd2.mapToPair(new PairFunction<String, String, Integer>() { 41 public Tuple2<String, Integer> call(String s) throws Exception { 42 return new Tuple2<String, Integer>(s, 1); 43 } 44 }); 45 46 JavaRDD<String> rdd11 = rdd2.mapPartitions(new FlatMapFunction<Iterator<String>, String>() { 47 public Iterable<String> call(Iterator<String> stringIterator) throws Exception { 48 ArrayList<String> strings = new ArrayList<String>(); 49 while (stringIterator.hasNext()){ 50 strings.add(stringIterator.next()); 51 } 52 return strings; 53 } 54 }); 55 56 JavaRDD<String> stringJavaRDD = rdd1.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() { 57 public Iterator<String> call(Integer integer, Iterator<String> stringIterator) throws Exception { 58 ArrayList<String> strings = new ArrayList<String>(); 59 while (stringIterator.hasNext()){ 60 strings.add(stringIterator.next()); 61 } 62 return strings.iterator(); 63 } 64 },false); 65 66 JavaRDD<String> sample = rdd1.sample(false, 0.3); 67 68 JavaRDD<String> union = rdd1.union(rdd2); 69 70 JavaRDD<String> intersection = rdd1.intersection(rdd2); 71 72 JavaRDD<String> distinct = rdd1.distinct();
二。JavaPairRDDs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | JavaPairRDD<String, Integer> rdd1 = sc.parallelizePairs(Arrays.asList( new Tuple2<String, Integer>( "asd" , 111 ), new Tuple2<String, Integer>( "asd" , 111 ), new Tuple2<String, Integer>( "asd" , 111 ) )); JavaPairRDD<String, Integer> rdd2 = sc.parallelizePairs(Arrays.asList( new Tuple2<String, Integer>( "sdfsd" , 222 ), new Tuple2<String, Integer>( "sdfsd" , 222 ), new Tuple2<String, Integer>( "sdfsd" , 222 ) )); JavaPairRDD<String, Iterable<Integer>> stringIterableJavaPairRDD = rdd1.groupByKey(); JavaPairRDD<String, Integer> rdd = rdd1.reduceByKey( new Function2<Integer, Integer, Integer>() { public Integer call(Integer integer, Integer integer2) throws Exception { return integer + integer2; } }); JavaPairRDD<String, Integer> rdd3 = rdd1.aggregateByKey( 0 , new Function2<Integer, Integer, Integer>() { public Integer call(Integer integer, Integer integer2) throws Exception { return max(integer,integer2); } }, new Function2<Integer, Integer, Integer>() { public Integer call(Integer integer, Integer integer2) throws Exception { return integer + integer2; } }); JavaPairRDD<String, Integer> rdd111 = rdd1.sortByKey(); JavaPairRDD<String, Tuple2<Integer, Integer>> join = rdd1.join(rdd2); JavaPairRDD<String, Tuple2<Integer, Optional<Integer>>> stringTuple2JavaPairRDD = rdd1.leftOuterJoin(rdd2); JavaPairRDD<String, Tuple2<Optional<Integer>, Integer>> stringTuple2JavaPairRDD1 = rdd1.rightOuterJoin(rdd2); JavaPairRDD<String, Tuple2<Optional<Integer>, Optional<Integer>>> stringTuple2JavaPairRDD2 = rdd1.fullOuterJoin(rdd2); JavaPairRDD<String, Tuple2<Iterable<Integer>, Iterable<Integer>>> cogroup = rdd1.cogroup(rdd2); JavaPairRDD<String, Integer> coalesce = rdd1.coalesce( 3 , false ); JavaPairRDD<String, Integer> repartition = rdd1.repartition( 3 ); JavaPairRDD<String, Integer> rdd5 = rdd1.repartitionAndSortWithinPartitions( new HashPartitioner( 2 )); JavaPairRDD<Tuple2<String, Integer>, Tuple2<String, Integer>> cartesian = rdd1.cartesian(rdd2); JavaRDD<String> pipe = rdd1.pipe( "" ); |
zip:
1 2 3 | JavaPairRDD<Tuple2<String, Integer>, Tuple2<String, Integer>> zip = rdd1.zip(rdd2); JavaPairRDD<Tuple2<String, Integer>, Long> tuple2LongJavaPairRDD = rdd1.zipWithIndex(); |
最后都要加上
1 | sc.stop(); |
repartitionAndSortWithinPartitions算子详解
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)