洛谷-P3376 【模板】网络最大流
P3376 【模板】网络最大流
网络流
FF 算法
直接用 dfs 求增广路
时间复杂度 \(O(ef)\),\(e\) 为边,\(f\) 为最大流
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;
const ll inf = 1e17 + 10;
int head[maxn], nex[maxn], tp = 2, to[maxn], vis[maxn];
ll vol[maxn];
int n, m, s, t;
void add(int u, int v, int w)
{
to[tp] = v;
vol[tp] = w;
nex[tp] = head[u];
head[u] = tp;
tp++;
}
ll dfs(int now, ll flow)
{
if(t == now)
return flow;
vis[now] = 1;
for(int i=head[now]; i; i=nex[i])
{
int v = to[i];
if(vol[i] <= 0 || vis[v] == 1) continue;
ll f = dfs(v, min(flow, vol[i]));
if(f != -1)
{
vol[i] -= f;
vol[i ^ 1] += f;
return f;
}
}
return -1;
}
ll FF()
{
ll ans = 0, now = 0;
while((now = dfs(s, inf)) != -1)
{
ans += now;
for(int i=0; i<=n; i++) vis[i] = 0;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> s >> t;
while(m--)
{
int l, r, w;
cin >> l >> r >> w;
add(l, r, w);
add(r, l, 0);
}
cout << FF() << endl;
return 0;
}
EK 算法
改用 bfs 求增广路
时间复杂度 \(O(ve^2)\),\(v\) 为点数,\(e\) 为边数
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;
const ll inf = 1e17 + 10;
int nex[maxn], head[maxn], to[maxn], tp = 1, last[maxn];
ll vol[maxn], flow[maxn];
int n, m, s, t;
inline void add(int u, int v, int w)
{
tp++;
nex[tp] = head[u];
head[u] = tp;
vol[tp] = w;
to[tp] = v;
}
bool bfs()
{
queue<int>q;
q.push(s);
last[s] = 0;
while(q.size())
{
int now = q.front();
q.pop();
if(now == t) break;
for(int i=head[now]; i; i=nex[i])
{
int v = to[i];
if(last[v] != -1 || vol[i] <= 0) continue;
last[v] = i ^ 1;
flow[v] = min(vol[i], flow[now]);
q.push(v);
}
}
return last[t] != -1;
}
ll EK()
{
ll ans = 0;
flow[s] = inf;
for(int i=0; i<=n; i++) last[i] = -1;
while(bfs())
{
for(int i=last[t]; i; i=last[to[i]])
{
vol[i] += flow[t];
vol[i ^ 1] -= flow[t];
}
ans += flow[t];
flow[s] = inf;
for(int i=0; i<=n; i++) last[i] = -1;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> s >> t;
while(m--)
{
int l, r, w;
cin >> l >> r >> w;
add(l, r, w);
add(r, l, 0);
}
cout << EK() << endl;
return 0;
}
Dinic 算法
用 bfs 分层之后,用 dfs 多次求该分层的所有增广路
时间复杂度 \(O(v^2e)\),\(v\) 为点数,\(e\) 为边数
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;
const ll inf = 1e17 + 10;
int head[maxn], nex[maxn], to[maxn], tp = 1, dep[maxn];
ll vol[maxn];
int n, m, s, t;
void add(int l, int r, int w)
{
tp++;
nex[tp] = head[l];
vol[tp] = w;
to[tp] = r;
head[l] = tp;
}
bool bfs()
{
queue<int>q;
for(int i=0; i<=n; i++) dep[i] = -1;
q.push(s);
dep[s] = 0;
while(q.size())
{
int now = q.front();
q.pop();
for(int i=head[now]; i; i=nex[i])
{
int u = to[i];
if(dep[u] != -1 || vol[i] <= 0) continue;
dep[u] = dep[now] + 1;
q.push(u);
}
}
return dep[t] != -1;
}
ll dfs(int now, ll flow)
{
if(now == t)
return flow;
ll ans = 0;
for(int i=head[now]; i && flow; i=nex[i])
{
int u = to[i];
if(vol[i] <= 0 || dep[u] != dep[now] + 1) continue;
ll f = dfs(u, min(flow, vol[i]));
vol[i] -= f;
vol[i ^ 1] += f;
ans += f;
flow -= f;
}
return ans;
}
ll dinic()
{
ll ans = 0;
while(bfs())
ans += dfs(s, inf);
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> s >> t;
while(m--)
{
int l, r, w;
cin >> l >> r >> w;
add(l, r, w);
add(r, l, 0);
}
cout << dinic() << endl;
return 0;
}
Dinic + 弧优化
在一次 dfs 求增广路的图中,每流完一条边,可以保证不会再被使用,所以可以在本次 dfs 中删除该边
时间复杂度不变,但是速度提高非常大
#include <iostream>
#include <cstdio>
#include <queue>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;
const ll inf = 1e17 + 10;
int head[maxn], nex[maxn], to[maxn], tp = 1, dep[maxn];
int cur[maxn];
ll vol[maxn];
int n, m, s, t;
void add(int l, int r, int w)
{
tp++;
nex[tp] = head[l];
vol[tp] = w;
to[tp] = r;
head[l] = tp;
}
bool bfs()
{
queue<int>q;
for(int i=0; i<=n; i++) dep[i] = -1;
for(int i=0; i<=n; i++) cur[i] = head[i];
q.push(s);
dep[s] = 0;
while(q.size())
{
int now = q.front();
q.pop();
for(int i=head[now]; i; i=nex[i])
{
int u = to[i];
if(dep[u] != -1 || vol[i] <= 0) continue;
dep[u] = dep[now] + 1;
q.push(u);
}
}
return dep[t] != -1;
}
ll dfs(int now, ll flow)
{
if(now == t)
return flow;
ll ans = 0;
for(int i=cur[now]; i && flow; i=nex[i])
{
cur[now] = i;
int u = to[i];
if(vol[i] <= 0 || dep[u] != dep[now] + 1) continue;
ll f = dfs(u, min(flow, vol[i]));
vol[i] -= f;
vol[i ^ 1] += f;
ans += f;
flow -= f;
}
return ans;
}
ll dinic()
{
ll ans = 0;
while(bfs())
ans += dfs(s, inf);
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> s >> t;
while(m--)
{
int l, r, w;
cin >> l >> r >> w;
add(l, r, w);
add(r, l, 0);
}
cout << dinic() << endl;
return 0;
}