常见类型的hashCode以及String类算法实现

常见类型的hashCode算法实现

第一章节我们了解到,java的Object类有hashCode,并且也介绍了默认的5种hashCode实现方式,下面我们来看看java中关于常见的对象hashCode实现(基本类型可以参见对应的包装类型),下述所有代码皆是基于JDK11(java version "11.0.13" 2021-10-19 LTS)来做测试的

  • Boolean: true/false分别返回1231/1237这俩素数

    public int hashCode() {
        return Boolean.hashCode(value);
    }
    
    public static int hashCode(boolean value) {
        return value ? 1231 : 1237;
    }
    
  • Byte/Short/Integer: 此处以Byte为例,Short/Integer类似

    public int hashCode() {
        return Byte.hashCode(value);
    }
    
    public static int hashCode(byte value) {
        return (int)value;
    }
    
    
  • Float:

    public static int hashCode(float value) {
        return floatToIntBits(value);
    }
    
    public static int floatToIntBits(float value) {
        if (!isNaN(value)) {
            return floatToRawIntBits(value);
        }
        return 0x7fc00000;
    }
    
    public static native int floatToRawIntBits(float value);
    
    
  • Double:

    public int hashCode() {
        return Double.hashCode(value);
    }
    
    public static int hashCode(double value) {
        long bits = doubleToLongBits(value);
        return (int)(bits ^ (bits >>> 32));
    }
    
    public static long doubleToLongBits(double value) {
        if (!isNaN(value)) {
            return doubleToRawLongBits(value);
        }
        return 0x7ff8000000000000L;
    }
    
    public static native long doubleToRawLongBits(double value);
    
  • Long:

    public int hashCode() {
        return Long.hashCode(value);
    }
    
    
    public static int hashCode(long value) {
        return (int)(value ^ (value >>> 32));
    }
    
    
  • String

    //  s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
    public int hashCode() {
        int h = hash;
        if (h == 0 && value.length > 0) {
            hash = h = isLatin1() ? StringLatin1.hashCode(value)
                                  : StringUTF16.hashCode(value);
        }
        return h;
    }
    
    // StringLatin1 的实现
    public static int hashCode(byte[] value) {
        int h = 0;
        for (byte v : value) {
            h = 31 * h + (v & 0xff);
        }
        return h;
    }
    
    // StringUTF16 的实现
    public static int hashCode(byte[] value) {
        int h = 0;
        int length = value.length >> 1;
        for (int i = 0; i < length; i++) {
            h = 31 * h + getChar(value, i);
        }
        return h;
    }
    
    

可以看到,针对于byte/short/integer,hashcode即为值本身,float/double/long的计算稍微复杂一点,基本都是基于字节数组做一些运算,String hashCode计算稍显复杂一点,字节数组的值加上一个素数的多项式公式的幂次方构成。

java的hashCode返回的是一个int值,int的范围是-21亿到21亿之间,java编程语言hash算法一般需要考虑几个点

  • 速度尽可能的快.
  • 尽量产生少的冲突,冲突过多的话,会导致很多数据经过hash计算后,hashcode一致,从而影响hash的查找效率

基于上述两点,通常情况下对于多项式幂的底数的选择是一件比较困难的事情,此处选择31基于上述两点做一些取舍,effective java也有相关提及,任何数乘以31可以被优化为 31*h = (32-1)*h = h<<5 -h,可以把乘法运算转换为移位和加法运算,我们知道,对于计算机而言,移位运算与加法运算的时间复杂度基本是同级的,乘法与除法相较于上述两类运算稍慢些,其实对应的可选素数还有17 (17*h = (16+1)*h = h<<4 + h>),单纯从数学的角度来讲,选择31可能并不是最合适的,计算机是一门理论与工程实践相结合的学科,这类优化提升对于cpu的指令运算速度有提升,下述代码是一个生成测试数据的示例代码,选了两组数做对比

import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.commons.lang3.RandomStringUtils;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class StringHashDemo {
    // static int[] BASIC_NUMBERS = {7,10, 11, 24, 31, 37,41,48,61};
    static int[] BASIC_NUMBERS = {7877,8689, 9421, 200329, 401113, 499691, 901177};
    static int CNT = 10000;
    static int GROUP = 20;

    public static int calcHashCode(String str, int prime) {
        char[] array = str.toCharArray();
        int result = 0;
        for (int i = 0; i < array.length; i++) {
            result = result * prime + array[i];
        }
        return result;
    }

    public static void main(String[] args) throws Exception {
        Map<String, StrValObject> data = buildMap();
        for (int prime : BASIC_NUMBERS) {
            buildData(data, prime);
        }
        outPutFile(data);
        outPutFile2(data);
    }

    private static Map<String, StrValObject> buildMap() {
        Map<String, StrValObject> result = Maps.newTreeMap();
        int groupCount = CNT / 20;
        for (int i = 0; i < GROUP; i++) {
            for (int j = 0; j < groupCount; j++) {
                String str = RandomStringUtils.randomAlphabetic(i);
                result.put(str, new StrValObject());
            }
        }
        return result;
    }

    private static void buildData(Map<String, StrValObject> mapData, int prime) {
        for (Map.Entry<String, StrValObject> entry : mapData.entrySet()) {
            String key = entry.getKey();
            StrValObject value = entry.getValue();
            int hash = calcHashCode(key, prime);
            InnerStrValObj innerStrValObj = new InnerStrValObj(prime, hash);
            value.getList().add(innerStrValObj);
        }
    }

    private static void outPutFile(Map<String, StrValObject> map) throws Exception {
        FileWriter fw = new FileWriter("/tmp/hash_code.csv", true);
        BufferedWriter bw = new BufferedWriter(fw);
        Stream<Integer> stream = Arrays.stream(BASIC_NUMBERS).boxed();
        String header = "str," + stream.map(i -> "hash_code_" + i).collect(Collectors.joining(","));
        bw.write(header);
        bw.newLine();
        for (Map.Entry<String, StrValObject> entry : map.entrySet()) {
            String key = entry.getKey();
            List<InnerStrValObj> list = entry.getValue().getList();
            Collections.sort(list);
            String row = key + "," + list.stream().map(obj -> obj.getHash() + "").collect(Collectors.joining(","));
            bw.write(row);
            bw.newLine();
        }
        bw.close();
    }

    private static void outPutFile2(Map<String, StrValObject> map) throws Exception {
        List<BufferedWriter> writers = Lists.newArrayList();
        for (int prime : BASIC_NUMBERS) {
            FileWriter fw = new FileWriter("/tmp/hash_code/hash_code" + prime + ".csv", true);
            BufferedWriter bw = new BufferedWriter(fw);
            String header = "str,hash_code_" + prime;
            bw.write(header);
            bw.newLine();

            writers.add(bw);
        }
        for (Map.Entry<String, StrValObject> entry : map.entrySet()) {
            String key = entry.getKey();
            List<InnerStrValObj> list = entry.getValue().getList();
            for (int i = 0; i < list.size(); i++) {
                InnerStrValObj innerStrValObj = list.get(i);
                String row = String.format("%s,%s", key, innerStrValObj.getHash());
                BufferedWriter bw = writers.get(i);
                bw.write(row);
                bw.newLine();
            }

        }
        for (BufferedWriter bw : writers) {
            bw.close();
        }
    }
}

@Data
@NoArgsConstructor
@AllArgsConstructor
class StrValObject {
    private List<InnerStrValObj> list = Lists.newArrayList();
}

@Data
@AllArgsConstructor
class InnerStrValObj implements Comparable<InnerStrValObj> {
    private int prime;
    private int hash;

    @Override
    public int compareTo(InnerStrValObj o) {
        if (prime == o.getPrime()) {
            return 0;
        } else if (prime < o.getPrime()) {
            return -1;
        } else {
            return 1;
        }
    }
}

合并csv的python代码

import pandas as pd
import os as os

BASE_TMP_DIE = '/tmp/hash_code/'

writer = pd.ExcelWriter('~/Desktop/hash_code_multiple_large_number.xlsx')

listdir = os.listdir(BASE_TMP_DIE)
for filename in listdir:
    if os.path.isfile(BASE_TMP_DIE + filename):
        sheetname = filename.split('.')[0]
        csvfile = pd.read_csv(BASE_TMP_DIE + filename, encoding="utf8")
        csvfile.to_excel(writer, sheet_name=sheetname)
    else:
        pass

writer.close()

生成的excel数据做了两套散点图,参考如下:

static int[] BASIC_NUMBERS = {7,10, 11, 24, 31, 37,41,48,61};

image

static int[] BASIC_NUMBERS = {7877,8689, 9421, 200329, 401113, 499691, 901177};

image

程序的整体逻辑生成10000个左右的随机数,数据一共20组,每组数据500个,数据的长度从1-20位不等,重复数据会被过滤,整体样本数据大概9000+,
从第一张图可以看到基本每个数据都有一个比较平缓的线条区域,由于生成的hashcode区间比较广,图像的纵坐标的值的跨度范围比较大,平的那一部分不代表这部分数据相等,只是说明这部分数据的区间范围相对而言比较集中,集中的意思预示着这部分数据产生冲突的概率比较大,样本生成的数据是一样的,采样控制变量法,修改运算的基数,从而可以比较用哪个素数来生成hashCode比较合适

第二张图采用的是几个比较大的素数,可以看到生成的图像近似于一条直线,相较于第一张而言产生的冲突概率较小,hashCode值分布较均匀

为什么需要在重写equals的同时重写hashCode方法

从上一章节中我们知道equals与hashCode是object类的两个方法,在我们进行编码的时候,如果判断两个对象相等,我们通常都会重写equals方法,常用的IDE都会检测到我们重写了equals方法的时候,通常都会建议我们重些hashCode方法,我们看下述代码,不重写hashCode的情形:

@Data
@AllArgsConstructor
public class ObjectWithOutHashCode {
    private int id;
    private String name;

    @Override
    public boolean equals(Object obj) {
        if (obj == null || !(obj instanceof ObjectWithOutHashCode)) {
            return false;
        }
        ObjectWithOutHashCode o = (ObjectWithOutHashCode) obj;
        if (Objects.equals(name, this.getName())) {
            return true;
        }
        return false;
    }

    public static void main(String[] args) {
        ObjectWithOutHashCode obj1 = new ObjectWithOutHashCode(1, "test");
        ObjectWithOutHashCode obj2 = new ObjectWithOutHashCode(2, "test");
        System.out.println(obj1.hashCode() + "," + obj2.hashCode());
        System.out.println("obj1 equals obj2:" + obj1.equals(obj2));
        List<ObjectWithOutHashCode> list = Lists.newArrayList();
        if (!list.contains(obj1)) {
            list.add(obj1);
        }
        if (!list.contains(obj2)) {
            list.add(obj2);
        }
        Set<ObjectWithOutHashCode> set = Sets.newHashSet(obj1, obj2);

        System.out.println(list.size());
        System.out.println(set.size());
    }
}

针对上述代码,输出结果如下:

356473385,2136344592
obj1 equals obj2:true
1
2

可以看到没有复写hashCode方法的对象,默认使用Object类的hashCode方法,两次new出来的对象hashCode不同,针对于equals方法返回true的情形,集合接口ArrayListHashSet的行为不太一致,可以参见ArrayList的add方法

    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }

    public int indexOf(Object o) {
        return indexOfRange(o, 0, size);
    }

    int indexOfRange(Object o, int start, int end) {
        Object[] es = elementData;
        if (o == null) {
            for (int i = start; i < end; i++) {
                if (es[i] == null) {
                    return i;
                }
            }
        } else {
            for (int i = start; i < end; i++) {
                if (o.equals(es[i])) {
                    return i;
                }
            }
        }
        return -1;
    }

可以看到针对对象不为空的情形,判断对象是否相等的方法使用的是equals,而HashSet的底层是基于HashMap实现,可以看看HashSet的add方法实现

    public boolean add(E e) {
        return map.put(e, PRESENT)==null;
    }

    // 底层调用的是Map的put方法 

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    // HashMap对象的方法
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

可以看到上述代码在做add的时候,会先去拿对象的hashCode与底层数组的大小做运算,确定元素位于那个槽,倘若hashCode一样(hash冲突),
进一步判断对象的equals方法是否相等,这两步相等则认为两个对象是同一个key,否则便是不同的key值了,这也能解释为什么上述list与set的元素个数不一致的原因
从上述代码对比我们可以看出,java的集合框架,涉及到底层需要进行hash计算的尽量同时重写这两个方法(除非你真的确认你的对象永远不会放进集合中,但是从程序的健壮性来考虑,
重写后的hashCode与equals方法能使代码健壮性更好)。

对应的可以看看重写了hashCoe/equals方法的对象输出:

@Data
@AllArgsConstructor
public class ObjectWithHashCode {
    private int id;
    private String name;

    @Override
    public boolean equals(Object obj) {
        if (obj == null || !(obj instanceof ObjectWithHashCode)) {
            return false;
        }
        ObjectWithHashCode o = (ObjectWithHashCode) obj;
        if (Objects.equals(name, this.getName())) {
            return true;
        }
        return false;
    }

    @Override
    public int hashCode() {
        return Objects.hash(name);
    }

    public static void main(String[] args) {
        ObjectWithHashCode obj1 = new ObjectWithHashCode(1, "test");
        ObjectWithHashCode obj2 = new ObjectWithHashCode(2, "test");
        System.out.println("obj1 equals obj2:" + obj1.equals(obj2));
        List<ObjectWithHashCode> list = Lists.newArrayList();
        if (!list.contains(obj1)) {
            list.add(obj1);
        }
        if (!list.contains(obj2)) {
            list.add(obj2);
        }
        Set<ObjectWithHashCode> set = Sets.newHashSet(obj1, obj2);

        System.out.println(list.size());
        System.out.println(set.size());
    }
}

输出:

obj1 equals obj2:true
1
1

so,为了程序少出bug,还是将equals与hashCode成对重写,Java7新增的Objects方法有相关的hash值计算方式

    // Objects.hash
    public static int hash(Object... values) {
        return Arrays.hashCode(values);
    }

    // Arrays.hashCode
    public static int hashCode(Object a[]) {
        if (a == null)
            return 0;

        int result = 1;

        for (Object element : a)
            result = 31 * result + (element == null ? 0 : element.hashCode());

        return result;
    }

可以看到,Arrays中的hashCode素数选择用的也是31

posted @ 2022-03-30 20:47  dev_song  阅读(507)  评论(0编辑  收藏  举报