KafkaSpout的处理流程

基于0.93版本Storm

首先,如果自己写KafkaSpout,该怎么办?有哪些地方需要考虑呢

1. 得实现Storm指定的接口。这样Storm才能够使用它。那么需要实现什么接口?需要提供什么功能给Storm调用呢?

2. 需要给spout的每个task指定任务,也就是把Kafka里的消息分配给spout task去读取。这时候,就会有以下问题:

  • 是否一个KafkaSpout需要支持多个topic?鉴于每个topology里可以有多个spout,这样做没有必要,而且会带来较大的复杂性。
  • 如何把partitions分给tasks? 这时候存在如下问题:
    • 是否每个partition最多只分给一个task?理论上,我们可以将一个partition的消息给多个task处理,只要这些task区分自己负责的那部分消息就行,比如一个task读偶offset的消息,一个读奇offset的消息。
    • 如何分才好。考虑到负载的平衡,而且要使得不同task间的任务不会冲突?比如,不会出现两个task读相同的消息的情况。
  • 每个partition从何处开始读取?如何记录对当前Kafka topic的消费进度,使得在topology下线以后,这部分消息不会丢失,以便以后可以接着上次的消费过度处理。

3. 如何读取?怎么使用Kafka API读取消息?每次读多大量的消息?需要预读和缓冲吗?

4. 无法从Kafka读取消息时如何处理?在spout里重试?认为spout出现异常,交由Storm重新调度?

5. KafkaSpout的进度严重落后于Kafka消息的数量时该如何处理?当spout读取的速度太小,使得Kafka里未被处理的消息越来越多时如何处理?

6. 需要读取的消息不存在该如何处理?比如从Kafka取消息时,想要获取的消息已经由于存储时间过久,被Kafka删除了,该如何处理?

7. 一个启用了log compactiontopic会有何不同?


先列一下KafkaSpout的实现里的关键类,以便接下来分析代码时更好理解

GlobalPartitionInformation

存储partitionleader broker的映射

Private Map<Integer,Broker> partitionMap;

Partition

存储某个partition和它的leader broker组成的元组

Public final Broker host;

Public final int partition;

KafkaSpout

实现IRichSpout接口

 

BrokerReader

获取分区信息。包括partition,以及partitionleader broker

GlobalPartitionInformation getCurrentBrokers();

PartitionManager

一个partition manager负责读取一个partition中的消息,并执行ack, fail, commit等操作

 

PartitionCoordinator

获取当前task所使用的PartitionManager集合

刷新当前task所使用的PartitionManager集合(以应于leader变更)

何时刷新?

List<PartitionManager> getMyManagedPartitions();

PartitionManager getManager(Partition partition);

void refresh();

StaticCoordinator

根据SpoutConfig中对于partitionleader的静态配置信息,决定当前task所使用的PartitionManager集合。

不刷新,只根据配置一次性决定partitionleader的映射

 

DynamicParitionConnections

存储broker, SimpleConsumerpartition的对应关系。

管理SimpleConsumer集合,包括建立,关闭SimpleConsumer

根据partition获取对应的SimpleConsumer,以复用SimpleConsumer

public SimpleConsumer register(Partition partition)

 

public SimpleConsumer register(Broker host, int partition)

 

public SimpleConsumer getConnection(Partition partition)

KafkaSpout的open方法

每个Spout task会有一个KafkaSpout的实例。当这个task初始化时,Storm会调用KafkaSpout的open方法,初始化这个spout task的运行环境,包括

  • a. 分配partiton给这个task
  • b. 为分到的每个partition生成一个PartitionManager。PartitionManager对于每个partition的消息实现了Spout接口的ack, nextTuple, fail等主要功能。

关键代码如下:KafkaSpout的open方法主要用来为当前的spout task提供一个Coordinator.

//创建一个DynamicPartitionConnections,用于获取partition对应的SimpleConsumer
        _connections = new DynamicPartitionConnections(_spoutConfig, KafkaUtils.makeBrokerReader(conf, _spoutConfig));

        // using TransactionalState like this is a hack
        //总共有多少task
        int totalTasks = context.getComponentTasks(context.getThisComponentId()).size();
        if (_spoutConfig.hosts instanceof StaticHosts) {
            _coordinator = new StaticCoordinator(_connections, conf, _spoutConfig, _state, context.getThisTaskIndex(), totalTasks, _uuid);
        } else {
            _coordinator = new ZkCoordinator(_connections, conf, _spoutConfig, _state, context.getThisTaskIndex(), totalTasks, _uuid);
        }

其中,在KafkaConfig中使用StaticHosts还是ZkHosts对DynamicParitionConnections和Coordinator的行为都有影响。

DynamicPartitonConnections  为Partition提供SimpleConsumer

因为Kafka的每个SimpleConsumer都可以用于与一个broker通信,不管是否这些请求是针对同一个topic或partition。当一个broker作为多个partition的leader时,只需要为这一个broker建立一个SimpleConsumser,就可以用于消费这多个partition。所以需要DynamicPartitionConnection来管理partition与SimpleConsumser之间的对应关系,更好地复用。

  • 当使用StaticHosts时,KafkaUtils.makeBrokerReader(conf, _spoutConfig)会生成一个StaticBrokerReader. 这个BrokerReader只会提供StaticHosts实例化时使用的分区信息。使得DynamicPartitionConnection的register(Partition partition)方法被调用时,只会返回同样的SimpleConsumer。
  • 当使用ZkHosts时,KafkaUtils.makeBrokerReader(conf, _spoutConfig)会生成一个ZkBrokerReader。这个BrokerReader带有自动刷新功能,当两次对它的的getCurrentBrokers的调用间隔较长,它就会重新获取这个topic的GlobalParitionInformation,即重新获取分区和分区的leader。使得DynamicPartitionConnection的register(Partition partition)方法被调用时,有可能会重新获取最新的分区信息。

Coordinator 为task分配partition,并且为每个partition建立PartitionManager

  Coordinator如何为task分配Partition?

无论是StaticCoordinator还是ZkCoordinator都是使用KafkaUtilsCalculatorPartitionsForTask方法来给task分配partitions

    public static List<Partition> calculatePartitionsForTask(GlobalPartitionInformation partitionInformation, int totalTasks, int taskIndex) {
        Preconditions.checkArgument(taskIndex < totalTasks, "task index must be less that total tasks");
        List<Partition> partitions = partitionInformation.getOrderedPartitions();
        int numPartitions = partitions.size();
        if (numPartitions < totalTasks) {
            LOG.warn("there are more tasks than partitions (tasks: " + totalTasks + "; partitions: " + numPartitions + "), some tasks will be idle");
        }
        List<Partition> taskPartitions = new ArrayList<Partition>();
        for (int i = taskIndex; i < numPartitions; i += totalTasks) {
            Partition taskPartition = partitions.get(i);
            taskPartitions.add(taskPartition);
        }
        logPartitionMapping(totalTasks, taskIndex, taskPartitions);
        return taskPartitions;
    }

  若一个task的index为a, 那么分给它的partition在所有partition中的index(如果用StaticHosts,并且只提供了部分partition,那么可能partition的index并不是partition id)为:

  partitionIndex = a + k*totalTasks, k是正整数,且partitionIndex < numPartitions

  • 当使用StaticHosts时,KafkaSpout会使用StaticCoordinator,这种Cooridnator的refresh方法什么都不会做。
  • 当使用ZkHosts时,KafkaSpout会使用ZkCoordinator。这种Coordinator的refresh方法被调用时,它会通过BrokerReader获取最新的分区信息,重新为当前的task计算分区,然后为新的分区提供PartitionManager,从当前task的分区表时移除旧的分区,关闭旧的分区。注意,当某个分区的leader变更后,它对应的Partition实例的broker字段会和以前的不同,因此会认为是新的Partition。当这种Coordinator的getMyManagedPartitions方法被调用时,如果过太久没刷新,它就会调用refresh()方法,重新获取这个task对应的PartitionManager集合。
    public List<PartitionManager> getMyManagedPartitions() {
            if (_lastRefreshTime == null || (System.currentTimeMillis() - _lastRefreshTime) > _refreshFreqMs) {
                refresh();
                _lastRefreshTime = System.currentTimeMillis();
            }
            return _cachedList;
        }
    • 那么何时getMyManagedPartition会被调用呢?是在KafkaSpout的nextTuple方法被调用时。也就是每次nextTuple被调用, ZkCoordinator都会检查是否需要更新PartitionManager集合。

    • 如果partition的leader发生成了变更,而Coordinator没有刷新呢?此时,按照旧的leader获取消息,就抛出异常。而KafkaSpout的nextTuple方法会捕获异常,然后主动调用coordinator的refresh()方法获取新的PartitionManager集合

KafkaSpout对于IRichSpout接口的实现

  nextTuple方法的实现 

 public void nextTuple() {
        List<PartitionManager> managers = _coordinator.getMyManagedPartitions();
        for (int i = 0; i < managers.size(); i++) {

            try {
                // in case the number of managers decreased
                _currPartitionIndex = _currPartitionIndex % managers.size();
                EmitState state = managers.get(_currPartitionIndex).next(_collector);
                if (state != EmitState.EMITTED_MORE_LEFT) {
                    _currPartitionIndex = (_currPartitionIndex + 1) % managers.size();
                }
                if (state != EmitState.NO_EMITTED) {
                    break;
                }
            } catch (FailedFetchException e) {
                LOG.warn("Fetch failed", e);
                _coordinator.refresh();
            }
        }

        long now = System.currentTimeMillis();
        if ((now - _lastUpdateMs) > _spoutConfig.stateUpdateIntervalMs) {
            commit();
        }
    }

首先,它会从coordinator处获取当前所管理的所有partition.然后试着从这些partition的消息中emit tuple, 由于可以采用schema解析Kafka的消息,使得一个消息对应多个tuple,所以这里每次试用nextTuple,可能实际上会emit多个tuple。这就带来了一个问题,如果一个 Kafka message生成多个tuple,那么是否这些tuple都被ack了,才认为这个Kafka消息处理完了呢?实际上,现在的KafkaSpout的实现里,只要其中有一个tuple失败了,就认为message失败了。

可以看到,代码里的for循环最多会循环manager.size()次,也就是它管理多少个partition,就最多循环几次。但实际上,只要有一个消息产生了tuple,for循环就会终止。也就是nextTuple被调用后,只要有一条消息被成功解析为tuple,它就不再继续处理消息,在按配置时间间隔记录下进度后,方法就执行完毕。nextTuple方法调用PartitionManager来emit tuple,根据PartitionManager的next方法返回的状态nextTuple的控制流程。PartitionManager的next方法最多只emit一条消息产生的所有tuple,先说一下这个next方法返回的状态的意义:

  • NO_EMITTED 表示此次调用没有emit任何tuple。其它状态都是已经从一条消息emit了tuple,有可能处理了多条消息,但可能最初的消息没能解析成tuple,但只有一条消息解析成tuple,next方法就不会再处理消息。
  • EMITTED_MORE_LEFT 表示已经处理了一个消息emit了一个或一些tuple, 但是这个partition还有消息已经被读取却还没有处理。
  • EMITTED_END 表示已经从一个消息emit了一个或一些tuple,并且这个partition所有已经获取的消息都已经被处理了。

根据这些状态,KafkaSpout做出以下处理:

  • 如果不是NO_EMITTED,也就是EMITTED_MORE_LEFT或者EMITTED_END,表示已经emit了tuple,所以就退出for循环,不再emit新的tuple.
  • 如果不是EMITTED_MORE_LEFT,说明这个PartitionManager已读的消息都已进行了处理,下次就从另一个PartitionManager处获取消息,所以更新_currentPartitionIndex

不管是emit了tuple而退出循环, 或者把当前管理的partition循环了一遍之后还却没有emit任何消息而退出循环。nextTuple的最后都会检查是否需要在Zookeeper里记录进度。

 KafkaSpout的ack, commit, fail方法的具体逻辑都由PartitionManager来实现。下一篇会详细进行分析。

posted @ 2015-03-13 19:10  devos  阅读(4677)  评论(0编辑  收藏  举报