Ubuntu 18.04在已经安装Docker CE后如何安装NVIDIA-Docker,以使docker容器内可以使用宿主机显卡
注意: 本文是在电脑上已经安装好docker环境的前提下进行的。
docker环境如何安装参照前文。
本文内容节选自: https://baimafujinji.blog.csdn.net/article/details/89784555
---------------------------------------
安装NVIDIA-Docker
# Add the package repositories curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \ sudo apt-key add - distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \ sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update
正式安装NVIDIA-Docker:
# Install nvidia-docker2 and reload the Docker daemon configuration sudo apt-get install -y nvidia-docker2 sudo pkill -SIGHUP dockerd
用最新的CUDA镜像来测试一下nvidia-smi(检查是否安装成功,安装成功,则会显示关于GPU的信息)。
# Test nvidia-smi with the latest official CUDA image docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
如下图所示:
三、用Docker(NVIDIA-Docker)载入TensorFlow镜像
参考Dockerhub关于Tensorflow的页面(链接),主要是“Running Containers”部分。例如,如果要开启一个基于Python2、CPU版的TensorFlow,可以使用:
docker run -it --rm tensorflow/tensorflow bash
或者,开启一个基于Python3、GPU版的TensorFlow(可根据需要的版本指定镜像),并开启容器。注意,这里我们使用的Tag是1.10.0-gpu-py3。因为CUDA的版本是9.0,太高版本的TensorFlow不支持。更多的可选Tag可以查阅链接。
docker run -it --rm --runtime=nvidia tensorflow/tensorflow:1.10.0-gpu-py3 python
来看一下执行的结果。
参考资料:
posted on 2020-09-21 11:00 Angry_Panda 阅读(871) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现