《Python数据可视化之matplotlib实践》 源码 第一篇 入门 第二章
图 2.1
import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['font.sans-serif']=['SimHei'] mpl.rcParams['axes.unicode_minus']=False x=[1,2,3,4,5,6,7,8] y=[3,1,4,5,8,9,7,2] plt.bar(x, y, align='center',color='c', tick_label=['q','a','c','e','r', 'j','b', 'p'], hatch='/') plt.xlabel('箱子编号') plt.ylabel('箱子重量(kg)') plt.show()
===================================================
图 2.2
import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['font.sans-serif']=['SimHei'] mpl.rcParams['axes.unicode_minus']=False x=[1,2,3,4,5,6,7,8] y=[3,1,4,5,8,9,7,2] plt.barh(x, y, align='center',color='c', tick_label=['q','a','c','e','r', 'j','b', 'p'], hatch='/') plt.ylabel('箱子编号') plt.xlabel('箱子重量(kg)') plt.show()
===================================================
图 2.3
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams['font.sans-serif']=['SimHei'] mpl.rcParams['axes.unicode_minus']=False boxWeight=np.random.randint(0,10,100) x=boxWeight bins=range(0,11,1) plt.hist(x, bins=bins, color='g', histtype='bar', rwidth=1, alpha=0.6, edgecolor='black') plt.xlabel('箱子重量 (kg)') plt.ylabel('销售数量 (个)') plt.show()
===================================================
图 2.4
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams['font.sans-serif']=['SimHei'] mpl.rcParams['axes.unicode_minus']=False kinds=['简易箱','保温箱','行李箱','密封箱'] colors=['#e41a1c', '#377eb8', '#4daf4a', '#984ea3'] soldNums=[0.05, 0.45, 0.15, 0.35] plt.pie(soldNums, labels=kinds, autopct='%3.1f%%', startangle=60, colors=colors) plt.title('不同箱子类型的销售数量占比') plt.show()
===================================================
图 2.5
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np barSlices=18 theta=np.linspace(0.0, 2*np.pi, barSlices, endpoint=False) r=30*np.random.rand(barSlices) plt.polar(theta, r, color='chartreuse', linewidth=2, marker='*', mfc='b', ms=10) plt.show()
===================================================
图 2.6
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np a=np.random.randn(100) b=np.random.randn(100) plt.scatter(a, b, s=np.power(10*a+20*b,2), c=np.random.rand(100), cmap=mpl.cm.RdYlBu,marker='o') plt.show()
===================================================
图 2.7
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np x=np.linspace(0.5, 2*np.pi, 20) y=np.random.randn(20) plt.stem(x,y,linefmt='-.', markerfmt='*', basefmt='-') plt.show()
===================================================
图 2.8
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams['font.sans-serif']=['SimHei'] mpl.rcParams['axes.unicode_minus']=False x=np.random.randn(1000) plt.boxplot(x) plt.xticks([1], ['随机数生成器AlphaRM']) plt.ylabel("随机数值") plt.title("随机数生成器抗干扰能力的稳定性") plt.grid(axis='y', ls=':', lw=1, color='gray', alpha=0.4) plt.show()
===================================================
图 2.9
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np x=np.linspace(0.1, 0.6, 6) y=np.exp(x) plt.errorbar(x, y, fmt='bo:', yerr=0.2, xerr=0.02) plt.xlim(0, 0.7) plt.show()
本博客是博主个人学习时的一些记录,不保证是为原创,个别文章加入了转载的源地址,还有个别文章是汇总网上多份资料所成,在这之中也必有疏漏未加标注处,如有侵权请与博主联系。
如果未特殊标注则为原创,遵循 CC 4.0 BY-SA 版权协议。
posted on 2020-05-14 12:42 Angry_Panda 阅读(628) 评论(0) 编辑 收藏 举报