【转载】 强化学习(九)Deep Q-Learning进阶之Nature DQN
原文地址:
https://www.cnblogs.com/pinard/p/9756075.html
-------------------------------------------------------------------------------------------------------
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning(以下简称DQN)的改进版,今天我们来讨论DQN的第一个改进版Nature DQN(NIPS 2015)。
本章内容主要参考了ICML 2016的deep RL tutorial和Nature DQN的论文。
1. DQN(NIPS 2013)的问题
在上一篇我们已经讨论了DQN(NIPS 2013)的算法原理和代码实现,虽然它可以训练像CartPole这样的简单游戏,但是有很多问题。这里我们先讨论第一个问题。
注意到DQN(NIPS 2013)里面,我们使用的目标Q值的计算方式:
因此,一个改进版的DQN: Nature DQN尝试用两个Q网络来减少目标Q值计算和要更新Q网络参数之间的依赖关系。下面我们来看看Nature DQN是怎么做的。
2. Nature DQN的建模
Nature DQN使用了两个Q网络,一个当前Q网络QQQQ用来选择动作,更新模型参数,另一个目标Q网络Q′用于计算目标Q值。目标Q网络的网络参数不需要迭代更新,而是每隔一段时间从当前Q网络QQ复制过来,即延时更新,这样可以减少 目标Q值和当前的Q值 相关性。
要注意的是,两个Q网络的结构是一模一样的。这样才可以复制网络参数。
Nature DQN和上一篇的DQN相比,除了用一个新的相同结构的目标Q网络来计算目标Q值以外,其余部分基本是完全相同的。
3. Nature DQN的算法流程
下面我们来总结下Nature DQN的算法流程, 基于DQN NIPS 2015:
注意,上述第二步的f步和g步的Q值计算也都需要通过Q网络计算得到。另外,实际应用中,为了算法较好的收敛,探索率εϵ需要随着迭代的进行而变小。
4. Nature DQN算法实例
下面我们用一个具体的例子来演示DQN的应用。仍然使用了OpenAI Gym中的CartPole-v0游戏来作为我们算法应用。CartPole-v0游戏的介绍参见这里。它比较简单,基本要求就是控制下面的cart移动使连接在上面的pole保持垂直不倒。这个任务只有两个离散动作,要么向左用力,要么向右用力。而state状态就是这个cart的位置和速度, pole的角度和角速度,4维的特征。坚持到200分的奖励则为过关。
完整的代码参见我的github: https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/nature_dqn.py
这里我们重点关注Nature DQN和上一节的NIPS 2013 DQN的代码的不同之处。
首先是Q网络,上一篇的DQN是一个三层的神经网络,而这里我们有两个一样的三层神经网络,一个是当前Q网络,一个是目标Q网络,网络的定义部分如下:
def create_Q_network(self): # input layer self.state_input = tf.placeholder("float", [None, self.state_dim]) # network weights with tf.variable_scope('current_net'): W1 = self.weight_variable([self.state_dim,20]) b1 = self.bias_variable([20]) W2 = self.weight_variable([20,self.action_dim]) b2 = self.bias_variable([self.action_dim]) # hidden layers h_layer = tf.nn.relu(tf.matmul(self.state_input,W1) + b1) # Q Value layer self.Q_value = tf.matmul(h_layer,W2) + b2 with tf.variable_scope('target_net'): W1t = self.weight_variable([self.state_dim,20]) b1t = self.bias_variable([20]) W2t = self.weight_variable([20,self.action_dim]) b2t = self.bias_variable([self.action_dim]) # hidden layers h_layer_t = tf.nn.relu(tf.matmul(self.state_input,W1t) + b1t) # Q Value layer self.target_Q_value = tf.matmul(h_layer,W2t) + b2t
对于定期将目标Q网络的参数更新的代码如下面两部分:
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net') e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='current_net') with tf.variable_scope('soft_replacement'): self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
def update_target_q_network(self, episode): # update target Q netowrk if episode % REPLACE_TARGET_FREQ == 0: self.session.run(self.target_replace_op) #print('episode '+str(episode) +', target Q network params replaced!')
此外,注意下我们计算目标Q值的部分,这里使用的目标Q网络的参数,而不是当前Q网络的参数:
# Step 2: calculate y y_batch = [] Q_value_batch = self.target_Q_value.eval(feed_dict={self.state_input:next_state_batch}) for i in range(0,BATCH_SIZE): done = minibatch[i][4] if done: y_batch.append(reward_batch[i]) else : y_batch.append(reward_batch[i] + GAMMA * np.max(Q_value_batch[i]))
其余部分基本和上一篇DQN的代码相同。这里给出我跑的某一次的结果:
episode: 0 Evaluation Average Reward: 9.8
episode: 100 Evaluation Average Reward: 9.8
episode: 200 Evaluation Average Reward: 9.6
episode: 300 Evaluation Average Reward: 10.0
episode: 400 Evaluation Average Reward: 34.8
episode: 500 Evaluation Average Reward: 177.4
episode: 600 Evaluation Average Reward: 200.0
episode: 700 Evaluation Average Reward: 200.0
episode: 800 Evaluation Average Reward: 200.0
episode: 900 Evaluation Average Reward: 198.4
episode: 1000 Evaluation Average Reward: 200.0
episode: 1100 Evaluation Average Reward: 193.2
episode: 1200 Evaluation Average Reward: 200.0
episode: 1300 Evaluation Average Reward: 200.0
episode: 1400 Evaluation Average Reward: 200.0
episode: 1500 Evaluation Average Reward: 200.0
episode: 1600 Evaluation Average Reward: 200.0
episode: 1700 Evaluation Average Reward: 200.0
episode: 1800 Evaluation Average Reward: 200.0
episode: 1900 Evaluation Average Reward: 200.0
episode: 2000 Evaluation Average Reward: 200.0
episode: 2100 Evaluation Average Reward: 200.0
episode: 2200 Evaluation Average Reward: 200.0
episode: 2300 Evaluation Average Reward: 200.0
episode: 2400 Evaluation Average Reward: 200.0
episode: 2500 Evaluation Average Reward: 200.0
episode: 2600 Evaluation Average Reward: 200.0
episode: 2700 Evaluation Average Reward: 200.0
episode: 2800 Evaluation Average Reward: 200.0
episode: 2900 Evaluation Average Reward: 200.0
注意,由于DQN不保证稳定的收敛,所以每次跑的结果会不同,如果你跑的结果后面仍然收敛的不好,可以把代码多跑几次,选择一个最好的训练结果。
5. Nature DQN总结
Nature DQN对DQN NIPS 2013做了相关性方面的改进,这个改进虽然不错,但是仍然没有解决DQN的 很多问题,比如:
1) 目标Q值的计算是否准确?全部通过max Q来计算有没有问题?
2) 随机采样的方法好吗?按道理不同样本的重要性是不一样的。
3) Q值代表状态,动作的价值,那么单独动作价值的评估会不会更准确?
第一个问题对应的改进是Double DQN, 第二个问题的改进是Prioritised Replay DQN,第三个问题的改进是Dueling DQN,这三个DQN的改进版我们在下一篇来讨论。
(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)
------------------------------------------------------------------------------------------------------
####################################################################### # Copyright (C) # # 2016 - 2019 Pinard Liu(liujianping-ok@163.com) # # https://www.cnblogs.com/pinard # # Permission given to modify the code as long as you keep this # # declaration at the top # ####################################################################### ##https://www.cnblogs.com/pinard/p/9756075.html## ##强化学习(九)Deep Q-Learning进阶之Nature DQN## import gym import tensorflow as tf import numpy as np import random from collections import deque # Hyper Parameters for DQN GAMMA = 0.9 # discount factor for target Q INITIAL_EPSILON = 0.5 # starting value of epsilon FINAL_EPSILON = 0.01 # final value of epsilon REPLAY_SIZE = 10000 # experience replay buffer size BATCH_SIZE = 32 # size of minibatch REPLACE_TARGET_FREQ = 10 # frequency to update target Q network class DQN(): # DQN Agent def __init__(self, env): # init experience replay self.replay_buffer = deque() # init some parameters self.time_step = 0 self.epsilon = INITIAL_EPSILON self.state_dim = env.observation_space.shape[0] self.action_dim = env.action_space.n self.create_Q_network() self.create_training_method() # Init session self.session = tf.InteractiveSession() self.session.run(tf.global_variables_initializer()) def create_Q_network(self): # input layer self.state_input = tf.placeholder("float", [None, self.state_dim]) # network weights with tf.variable_scope('current_net'): W1 = self.weight_variable([self.state_dim,20]) b1 = self.bias_variable([20]) W2 = self.weight_variable([20,self.action_dim]) b2 = self.bias_variable([self.action_dim]) # hidden layers h_layer = tf.nn.relu(tf.matmul(self.state_input,W1) + b1) # Q Value layer self.Q_value = tf.matmul(h_layer,W2) + b2 with tf.variable_scope('target_net'): W1t = self.weight_variable([self.state_dim,20]) b1t = self.bias_variable([20]) W2t = self.weight_variable([20,self.action_dim]) b2t = self.bias_variable([self.action_dim]) # hidden layers h_layer_t = tf.nn.relu(tf.matmul(self.state_input,W1t) + b1t) # Q Value layer self.target_Q_value = tf.matmul(h_layer,W2t) + b2t t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net') e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='current_net') with tf.variable_scope('soft_replacement'): self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)] def create_training_method(self): self.action_input = tf.placeholder("float",[None,self.action_dim]) # one hot presentation self.y_input = tf.placeholder("float",[None]) Q_action = tf.reduce_sum(tf.multiply(self.Q_value,self.action_input),reduction_indices = 1) self.cost = tf.reduce_mean(tf.square(self.y_input - Q_action)) self.optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.cost) def perceive(self,state,action,reward,next_state,done): one_hot_action = np.zeros(self.action_dim) one_hot_action[action] = 1 self.replay_buffer.append((state,one_hot_action,reward,next_state,done)) if len(self.replay_buffer) > REPLAY_SIZE: self.replay_buffer.popleft() if len(self.replay_buffer) > BATCH_SIZE: self.train_Q_network() def train_Q_network(self): self.time_step += 1 # Step 1: obtain random minibatch from replay memory minibatch = random.sample(self.replay_buffer,BATCH_SIZE) state_batch = [data[0] for data in minibatch] action_batch = [data[1] for data in minibatch] reward_batch = [data[2] for data in minibatch] next_state_batch = [data[3] for data in minibatch] # Step 2: calculate y y_batch = [] Q_value_batch = self.target_Q_value.eval(feed_dict={self.state_input:next_state_batch}) for i in range(0,BATCH_SIZE): done = minibatch[i][4] if done: y_batch.append(reward_batch[i]) else : y_batch.append(reward_batch[i] + GAMMA * np.max(Q_value_batch[i])) self.optimizer.run(feed_dict={ self.y_input:y_batch, self.action_input:action_batch, self.state_input:state_batch }) def egreedy_action(self,state): Q_value = self.Q_value.eval(feed_dict = { self.state_input:[state] })[0] if random.random() <= self.epsilon: self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / 10000 return random.randint(0,self.action_dim - 1) else: self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / 10000 return np.argmax(Q_value) def action(self,state): return np.argmax(self.Q_value.eval(feed_dict = { self.state_input:[state] })[0]) def update_target_q_network(self, episode): # update target Q netowrk if episode % REPLACE_TARGET_FREQ == 0: self.session.run(self.target_replace_op) #print('episode '+str(episode) +', target Q network params replaced!') def weight_variable(self,shape): initial = tf.truncated_normal(shape) return tf.Variable(initial) def bias_variable(self,shape): initial = tf.constant(0.01, shape = shape) return tf.Variable(initial) # --------------------------------------------------------- # Hyper Parameters ENV_NAME = 'CartPole-v0' EPISODE = 3000 # Episode limitation STEP = 300 # Step limitation in an episode TEST = 5 # The number of experiment test every 100 episode def main(): # initialize OpenAI Gym env and dqn agent env = gym.make(ENV_NAME) agent = DQN(env) for episode in range(EPISODE): # initialize task state = env.reset() # Train for step in range(STEP): action = agent.egreedy_action(state) # e-greedy action for train next_state,reward,done,_ = env.step(action) # Define reward for agent reward = -1 if done else 0.1 agent.perceive(state,action,reward,next_state,done) state = next_state if done: break # Test every 100 episodes if episode % 100 == 0: total_reward = 0 for i in range(TEST): state = env.reset() for j in range(STEP): env.render() action = agent.action(state) # direct action for test state,reward,done,_ = env.step(action) total_reward += reward if done: break ave_reward = total_reward/TEST print ('episode: ',episode,'Evaluation Average Reward:',ave_reward) agent.update_target_q_network(episode) if __name__ == '__main__': main()
posted on 2019-04-09 18:27 Angry_Panda 阅读(603) 评论(0) 编辑 收藏 举报