代码随想录 算法训练营day11 Leetcode150 逆波兰表达式求值 Leetcode239 滑动窗口最大值 Leetcode347 前K个高频元素

Leetcode150 逆波兰表达式求值

题目链接

class Solution {
    public int evalRPN(String[] tokens) {
        Deque<Integer> stack = new LinkedList();
        for (String s : tokens) {
            if ("+".equals(s)) {        // leetcode 内置jdk的问题,不能使用==判断字符串是否相等
                stack.push(stack.pop() + stack.pop());      // 注意 - 和/ 需要特殊处理
            } else if ("-".equals(s)) {
                stack.push(-stack.pop() + stack.pop());
            } else if ("*".equals(s)) {
                stack.push(stack.pop() * stack.pop());
            } else if ("/".equals(s)) {
                int temp1 = stack.pop();
                int temp2 = stack.pop();
                stack.push(temp2 / temp1);
            } else {
                stack.push(Integer.valueOf(s));
            }
        }
        return stack.pop();
    }
}

Leetcode239 滑动窗口最大值

题目链接

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        ArrayDeque<Integer> deque = new ArrayDeque<>();
        int n = nums.length;
        int[] res = new int[n - k + 1];
        int idx = 0;
        for(int i = 0; i < n; i++) {
            // 根据题意,i为nums下标,是要在[i - k + 1, i] 中选到最大值,只需要保证两点
            // 1.队列头结点需要在[i - k + 1, i]范围内,不符合则要弹出
            while(!deque.isEmpty() && deque.peek() < i - k + 1){
                deque.poll();
            }
            // 2.既然是单调,就要保证每次放进去的数字要比末尾的都大,否则也弹出
            while(!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {
                deque.pollLast();
            }

            deque.offer(i);

            // 因为单调,当i增长到符合第一个k范围的时候,每滑动一步都将队列头节点放入结果就行了
            if(i >= k - 1){
                res[idx++] = nums[deque.peek()];
            }
        }
        return res;
    }
}

Leetcode 347 前k个高频元素

题目链接

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>(); //key为数组元素值,val为对应出现次数
        for (int num : nums) {
            map.put(num, map.getOrDefault(num, 0) + 1);
        }
        //在优先队列中存储二元组(num, cnt),cnt表示元素值num在数组中的出现次数
        //出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2) -> pair1[1] - pair2[1]);
        for (Map.Entry<Integer, Integer> entry : map.entrySet()) { //小顶堆只需要维持k个元素有序
            if (pq.size() < k) { //小顶堆元素个数小于k个时直接加
                pq.add(new int[]{entry.getKey(), entry.getValue()});
            } else {
                if (entry.getValue() > pq.peek()[1]) { //当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
                    pq.poll(); //弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
                    pq.add(new int[]{entry.getKey(), entry.getValue()});
                }
            }
        }
        int[] ans = new int[k];
        for (int i = k - 1; i >= 0; i--) { //依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
}

 

posted @   lorange  阅读(5)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 零经验选手,Compose 一天开发一款小游戏!
· 因为Apifox不支持离线,我果断选择了Apipost!
· 通过 API 将Deepseek响应流式内容输出到前端
点击右上角即可分享
微信分享提示