Numpy中的广播原则(机制)

为了了解这个原则,首先我们来看一组例子:

# 数组直接对一个数进行加减乘除,产生的结果是数组中的每个元素都会加减乘除这个数。
In [12]: import numpy as np
In [13]: a = np.arange(1,13).reshape((4, 3))
In [14]: a * 2
Out[14]: array([[ 2, 4, 6],
                [ 8, 10, 12],
                [14, 16, 18],
                [20, 22, 24]])
# 接下来我们看一下数组与数组之间的计算
In [17]: b = np.arange(12,24).reshape((4,3))
In [18]: b
Out[18]: array([[12, 13, 14],
                [15, 16, 17],
                [18, 19, 20],
                [21, 22, 23]])
In [19]: a + b
Out[19]: array([[13, 15, 17],
                [19, 21, 23],
                [25, 27, 29],
                [31, 33, 35]])
In [20]: c = np.array([1,2,3])
In [21]: a+c
Out[21]: array([[ 2, 4, 6],
                [ 5, 7, 9],
                [ 8, 10, 12],
                [11, 13, 15]])
In [22]: d = np.arange(10,14).reshape((4,1))
In [23]: d
Out[23]: array([[10],
                [11],
                [12],
                [13]])
In [24]: a + d
Out[24]: array([[11, 12, 13],
                [15, 16, 17],
                [19, 20, 21],
                [23, 24, 25]])
# 从上面可以看出,和线性代数中不同的是,m*n列的m行的一维数组或者n列的一维数组也是可以计算的。

这是为什么呢?这里要提到numpy的广播原则:

如果两个数组的后缘维度(从末尾开始算起的维度)轴长度相符其中一方的长度为1,则认为它们是广播兼容的。广播会在缺失维度和(或)轴长度为1的维度上进行。

在上面的代码中,a的维度是(4,3),c的维度是(1,3);d的维度是(4,1)。所以假设有两个数组,第一个的维度是(x_1, y_1, z_1),另一个数组的维度是(x_2, y_2, z_2),要判断这两个数组能不能进行计算,可以用如下方法来判断:

if z_1 == z_2 or z_1 == 1 or z_2 == 1:
    if y_1 == y_2 or y_1 == 1 or y_2 == 1:
        if x_1 == x_2 or x_1 == 1 or x_2 == 1:
            可以运算
        else:
            不可以运算
    else:
        不可以运算
else:
    不可以运算

这里需要注意:(3,3,2)和(3,2)是可以运算的,因为对于二维数组(3,2)也可以表示为(1,3,2),套用上述的规则是完全适用的,同理:(4,2,5,4)和(2,1,4)也是可以进行运算的。

posted @ 2019-02-28 10:53  Dereen  阅读(421)  评论(0编辑  收藏  举报