一、引子
Java.util.concurrent包都是Doug Lea写的,来混个眼熟
是的,就是他,提出了JSR166(Java Specification RequestsJava 规范提案),该规范的核心就是AbstractQueuedSynchronizer同步器框架(AQS)。这个框架为构造同步器提供一种通用的机制,并且被j.u.c包中大部分类使用。
包结构如下图,其中AbstractOwnableSynchronizer是其父类,而AbstractQueuedLongSynchronizer是其32位状态的升级版64位的实现,适用于多级屏障(CyclicBarrier
)。
AQS的继承关系如下图,可见老李头对它多重视了。老李头的论文解析飞机票:《The java.util.concurrent Synchronizer Framework》 JUC同步器框架(AQS框架)原文翻译 。
二、AQS架构设计原理
2.1 需求分析
为了使框架能得到广泛应用,AQS同步器定义两种资源共享方式:
Exclusive:独占模式,同时只有一个线程能执行,如ReentrantLock
Share:共享模式,多个线程可同时执行,如Semaphore/CountDownLatch。
一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。
自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:
- isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
- tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
- tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
- tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
- tryReleaseShared(int):共享方式。尝试释放资源,成功则返回true,失败则返回false。
AQS为了实现上述操作,需要下面三个基本组件的相互协作:
- 同步状态的原子性管理;
- 线程的阻塞与解除阻塞;
- 队列的管理;
2.2 同步状态的原子性管理
state字段, 用于同步线程之间的共享状态。通过 CAS 和 volatile 保证其原子性和可见性。
如下图:
1)volatile修饰state:
线程内的工作内存修改数据后会强制刷新到主存中去,且使其他线程中的工作内存中的该变量失效,下次只能从主存读取。实现了多线程数据可见性。
2)CAS操作state:
unsafe.compareAndSwapInt(this, stateOffset, expect, update); 根据对象的state同步状态偏移量是否和expect值相同,相同则更新。标准的CAS操作。unsafe飞机票:在openjdk8下看Unsafe源码
2.3 线程的阻塞与解除阻塞
利用LockSupport.park() 和 LockSupport.unpark() 实现线程的阻塞和唤醒(底层调用Unsafe的native park和unpark实现),同时支持超时时间。
2.4 队列的管理
根据论文里描述, AQS 里将阻塞线程封装到一个内部类 Node 里。并维护一个 CLH Node FIFO 队列。 CLH队列是一个非阻塞的 FIFO 队列,也就是说往里面插入或移除一个节点的时候,在并发条件下不会阻塞,而是通过自旋锁和 CAS 保证节点插入和移除的原子性。AQS里的CLH是一个双向链表,数据结构如下图:
node数据结构,后续加上。
三、AQS源码实现
本节开始讲解AQS的源码实现。依照acquire-release、acquireShared-releaseShared的次序来。
3.1 acquire(int)独占模式获取资源
此方法是独占模式下线程获取共享资源的顶层入口。如果获取到资源,线程直接返回,否则进入等待队列,直到获取到资源为止,且整个过程忽略中断的影响。这也正是lock()的语义,当然不仅仅只限于lock()。获取到资源后,线程就可以去执行其临界区代码了。下面是acquire()的源码:
1 public final void acquire(int arg) {
2 if (!tryAcquire(arg) &&
3 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
4 selfInterrupt();
5 }
函数流程如下:
- tryAcquire()尝试直接去获取资源,如果成功则直接返回;
- addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
- acquireQueued()使线程在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
- 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。
这时单凭这4个抽象的函数来看流程还有点朦胧,不要紧,看完接下来的分析后,你就会明白了。就像《大话西游》里唐僧说的:等你明白了舍生取义的道理,你自然会回来和我唱这首歌的。
3.1.1 tryAcquire(int)
此方法尝试去获取独占资源。如果获取成功,则直接返回true,否则直接返回false。这也正是tryLock()的语义,还是那句话,当然不仅仅只限于tryLock()。如下是tryAcquire()的源码:
1 protected boolean tryAcquire(int arg) {
2 throw new UnsupportedOperationException();
3 }
什么?直接throw异常?说好的功能呢?好吧,还记得概述里讲的AQS只是一个框架,具体资源的获取/释放方式交由自定义同步器去实现吗?就是这里了!!!AQS这里只定义了一个接口,具体资源的获取交由自定义同步器去实现了(通过state的get/set/CAS)!!!至于能不能重入,能不能加塞,那就看具体的自定义同步器怎么去设计了!!!当然,自定义同步器在进行资源访问时要考虑线程安全的影响。
这里之所以没有定义成abstract,是因为独占模式下只用实现tryAcquire-tryRelease,而共享模式下只用实现tryAcquireShared-tryReleaseShared。如果都定义成abstract,那么每个模式也要去实现另一模式下的接口。说到底,Doug Lea还是站在咱们开发者的角度,尽量减少不必要的工作量。
3.1.2 addWaiter(Node)
此方法用于将当前线程加入到等待队列的队尾,并返回当前线程所在的结点。还是上源码吧:
1 private Node addWaiter(Node mode) {
2 //以给定模式构造结点。mode有两种:EXCLUSIVE(独占)和SHARED(共享)
3 Node node = new Node(Thread.currentThread(), mode);
4
5 //尝试快速方式直接放到队尾。
6 Node pred = tail;
7 if (pred != null) {
8 node.prev = pred;
9 if (compareAndSetTail(pred, node)) {
10 pred.next = node;
11 return node;
12 }
13 }
14
15 //上一步失败则通过enq入队。
16 enq(node);
17 return node;
18 }
不用再说了,直接看注释吧。
3.1.2.1 enq(Node)
此方法用于将node加入队尾。源码如下:
1 private Node enq(final Node node) {
2 //CAS"自旋",直到成功加入队尾
3 for (;;) {
4 Node t = tail;
5 if (t == null) { // 队列为空,创建一个空的标志结点作为head结点,并将tail也指向它。
6 if (compareAndSetHead(new Node()))
7 tail = head;
8 } else {//正常流程,放入队尾
9 node.prev = t;
10 if (compareAndSetTail(t, node)) {
11 t.next = node;
12 return t;
13 }
14 }
15 }
16 }
如果你看过AtomicInteger.getAndIncrement()函数源码,那么相信你一眼便看出这段代码的精华。CAS自旋volatile变量,是一种很经典的用法。还不太了解的,自己去百度一下吧。
3.1.3 acquireQueued(Node, int)
OK,通过tryAcquire()和addWaiter(),该线程获取资源失败,已经被放入等待队列尾部了。聪明的你立刻应该能想到该线程下一部该干什么了吧:进入等待状态休息,直到其他线程彻底释放资源后唤醒自己,自己再拿到资源,然后就可以去干自己想干的事了。没错,就是这样!是不是跟医院排队拿号有点相似~~acquireQueued()就是干这件事:在等待队列中排队拿号(中间没其它事干可以休息),直到拿到号后再返回。这个函数非常关键,还是上源码吧:
1 final boolean acquireQueued(final Node node, int arg) {
2 boolean failed = true;//标记是否成功拿到资源
3 try {
4 boolean interrupted = false;//标记等待过程中是否被中断过
5
6 //又是一个“自旋”!
7 for (;;) {
8 final Node p = node.predecessor();//拿到前驱
9 //如果前驱是head,即该结点已成老二,那么便有资格去尝试获取资源(可能是老大释放完资源唤醒自己的,当然也可能被interrupt了)。
10 if (p == head && tryAcquire(arg)) {
11 setHead(node);//拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。
12 p.next = null; // setHead中node.prev已置为null,此处再将head.next置为null,就是为了方便GC回收以前的head结点。也就意味着之前拿完资源的结点出队了!
13 failed = false;
14 return interrupted;//返回等待过程中是否被中断过
15 }
16
17 //如果自己可以休息了,就进入waiting状态,直到被unpark()
18 if (shouldParkAfterFailedAcquire(p, node) &&
19 parkAndCheckInterrupt())
20 interrupted = true;//如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true
21 }
22 } finally {
23 if (failed)
24 cancelAcquire(node);
25 }
26 }
到这里了,我们先不急着总结acquireQueued()的函数流程,先看看shouldParkAfterFailedAcquire()和parkAndCheckInterrupt()具体干些什么。
3.1.3.1 shouldParkAfterFailedAcquire(Node, Node)
此方法主要用于检查状态,看看自己是否真的可以去休息了(进入waiting状态,如果线程状态转换不熟,可以参考本人上一篇写的Thread详解),万一队列前边的线程都放弃了只是瞎站着,那也说不定,对吧!
1 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
2 int ws = pred.waitStatus;//拿到前驱的状态
3 if (ws == Node.SIGNAL)
4 //如果已经告诉前驱拿完号后通知自己一下,那就可以安心休息了
5 return true;
6 if (ws > 0) {
7 /*
8 * 如果前驱放弃了,那就一直往前找,直到找到最近一个正常等待的状态,并排在它的后边。
9 * 注意:那些放弃的结点,由于被自己“加塞”到它们前边,它们相当于形成一个无引用链,稍后就会被保安大叔赶走了(GC回收)!
10 */
11 do {
12 node.prev = pred = pred.prev;
13 } while (pred.waitStatus > 0);
14 pred.next = node;
15 } else {
16 //如果前驱正常,那就把前驱的状态设置成SIGNAL,告诉它拿完号后通知自己一下。有可能失败,人家说不定刚刚释放完呢!
17 compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
18 }
19 return false;
20 }
整个流程中,如果前驱结点的状态不是SIGNAL,那么自己就不能安心去休息,需要去找个安心的休息点,同时可以再尝试下看有没有机会轮到自己拿号。
3.1.3.2 parkAndCheckInterrupt()
如果线程找好安全休息点后,那就可以安心去休息了。此方法就是让线程去休息,真正进入等待状态。
1 private final boolean parkAndCheckInterrupt() {
2 LockSupport.park(this);//调用park()使线程进入waiting状态
3 return Thread.interrupted();//如果被唤醒,查看自己是不是被中断的。
4 }
park()会让当前线程进入waiting状态。在此状态下,有两种途径可以唤醒该线程:1)被unpark();2)被interrupt()。(再说一句,如果线程状态转换不熟,可以参考本人写的Thread详解)。需要注意的是,Thread.interrupted()会清除当前线程的中断标记位。
3.1.3.3 小结
OK,看了shouldParkAfterFailedAcquire()和parkAndCheckInterrupt(),现在让我们再回到acquireQueued(),总结下该函数的具体流程:
- 结点进入队尾后,检查状态,找到安全休息点;
- 调用park()进入waiting状态,等待unpark()或interrupt()唤醒自己;
- 被唤醒后,看自己是不是有资格能拿到号。如果拿到,head指向当前结点,并返回从入队到拿到号的整个过程中是否被中断过;如果没拿到,继续流程1。
3.1.4 小结
OKOK,acquireQueued()分析完之后,我们接下来再回到acquire()!再贴上它的源码吧:
1 public final void acquire(int arg) {
2 if (!tryAcquire(arg) &&
3 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
4 selfInterrupt();
5 }
再来总结下它的流程吧:
- 调用自定义同步器的tryAcquire()尝试直接去获取资源,如果成功则直接返回;
- 没成功,则addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
- acquireQueued()使线程在等待队列中休息,有机会时(轮到自己,会被unpark())会去尝试获取资源。获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
- 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。
由于此函数是重中之重,我再用流程图总结一下:
至此,acquire()的流程终于算是告一段落了。这也就是ReentrantLock.lock()的流程,不信你去看其lock()源码吧,整个函数就是一条acquire(1)!!!
3.2 release(int)独占模式释放资源
上一小节已经把acquire()说完了,这一小节就来讲讲它的反操作release()吧。此方法是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。这也正是unlock()的语义,当然不仅仅只限于unlock()。下面是release()的源码:
1 public final boolean release(int arg) {
2 if (tryRelease(arg)) {
3 Node h = head;//找到头结点
4 if (h != null && h.waitStatus != 0)
5 unparkSuccessor(h);//唤醒等待队列里的下一个线程
6 return true;
7 }
8 return false;
9 }
逻辑并不复杂。它调用tryRelease()来释放资源。有一点需要注意的是,它是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自定义同步器在设计tryRelease()的时候要明确这一点!!
3.2.1 tryRelease(int)
此方法尝试去释放指定量的资源。下面是tryRelease()的源码:
1 protected boolean tryRelease(int arg) {
2 throw new UnsupportedOperationException();
3 }
跟tryAcquire()一样,这个方法是需要独占模式的自定义同步器去实现的。正常来说,tryRelease()都会成功的,因为这是独占模式,该线程来释放资源,那么它肯定已经拿到独占资源了,直接减掉相应量的资源即可(state-=arg),也不需要考虑线程安全的问题。但要注意它的返回值,上面已经提到了,release()是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自义定同步器在实现时,如果已经彻底释放资源(state=0),要返回true,否则返回false。
3.2.2 unparkSuccessor(Node)
此方法用于唤醒等待队列中下一个线程。下面是源码:
1 private void unparkSuccessor(Node node) {
2 //这里,node一般为当前线程所在的结点。
3 int ws = node.waitStatus;
4 if (ws < 0)//置零当前线程所在的结点状态,允许失败。
5 compareAndSetWaitStatus(node, ws, 0);
6
7 Node s = node.next;//找到下一个需要唤醒的结点s
8 if (s == null || s.waitStatus > 0) {//如果为空或已取消
9 s = null;
10 for (Node t = tail; t != null && t != node; t = t.prev)
11 if (t.waitStatus <= 0)//从这里可以看出,<=0的结点,都是还有效的结点。
12 s = t;
13 }
14 if (s != null)
15 LockSupport.unpark(s.thread);//唤醒
16 }
这个函数并不复杂。一句话概括:用unpark()唤醒等待队列中最前边的那个未放弃线程,这里我们也用s来表示吧。此时,再和acquireQueued()联系起来,s被唤醒后,进入if (p == head && tryAcquire(arg))的判断(即使p!=head也没关系,它会再进入shouldParkAfterFailedAcquire()寻找一个安全点。这里既然s已经是等待队列中最前边的那个未放弃线程了,那么通过shouldParkAfterFailedAcquire()的调整,s也必然会跑到head的next结点,下一次自旋p==head就成立啦),然后s把自己设置成head标杆结点,表示自己已经获取到资源了,acquire()也返回了!!And then, DO what you WANT!
3.2.3 小结
release()是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。
3.3 acquireShared(int)共享模式获取资源
此方法是共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。下面是acquireShared()的源码:
1 public final void acquireShared(int arg) {
2 if (tryAcquireShared(arg) < 0)
3 doAcquireShared(arg);
4 }
这里tryAcquireShared()依然需要自定义同步器去实现。但是AQS已经把其返回值的语义定义好了:负值代表获取失败;0代表获取成功,但没有剩余资源;正数表示获取成功,还有剩余资源,其他线程还可以去获取。所以这里acquireShared()的流程就是:
- tryAcquireShared()尝试获取资源,成功则直接返回;
- 失败则通过doAcquireShared()进入等待队列,直到获取到资源为止才返回。
3.3.1 doAcquireShared(int)
此方法用于将当前线程加入等待队列尾部休息,直到其他线程释放资源唤醒自己,自己成功拿到相应量的资源后才返回。下面是doAcquireShared()的源码:
1 private void doAcquireShared(int arg) {
2 final Node node = addWaiter(Node.SHARED);//加入队列尾部
3 boolean failed = true;//是否成功标志
4 try {
5 boolean interrupted = false;//等待过程中是否被中断过的标志
6 for (;;) {
7 final Node p = node.predecessor();//前驱
8 if (p == head) {//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,很可能是head用完资源来唤醒自己的
9 int r = tryAcquireShared(arg);//尝试获取资源
10 if (r >= 0) {//成功
11 setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
12 p.next = null; // help GC
13 if (interrupted)//如果等待过程中被打断过,此时将中断补上。
14 selfInterrupt();
15 failed = false;
16 return;
17 }
18 }
19
20 //判断状态,寻找安全点,进入waiting状态,等着被unpark()或interrupt()
21 if (shouldParkAfterFailedAcquire(p, node) &&
22 parkAndCheckInterrupt())
23 interrupted = true;
24 }
25 } finally {
26 if (failed)
27 cancelAcquire(node);
28 }
29 }
有木有觉得跟acquireQueued()很相似?对,其实流程并没有太大区别。只不过这里将补中断的selfInterrupt()放到doAcquireShared()里了,而独占模式是放到acquireQueued()之外,其实都一样,不知道Doug Lea是怎么想的。
跟独占模式比,还有一点需要注意的是,这里只有线程是head.next时(“老二”),才会去尝试获取资源,有剩余的话还会唤醒之后的队友。那么问题就来了,假如老大用完后释放了5个资源,而老二需要6个,老三需要1个,老四需要2个。因为老大先唤醒老二,老二一看资源不够自己用继续park(),也更不会去唤醒老三和老四了。独占模式,同一时刻只有一个线程去执行,这样做未尝不可;但共享模式下,多个线程是可以同时执行的,现在因为老二的资源需求量大,而把后面量小的老三和老四也都卡住了。
3.3.1.1 setHeadAndPropagate(Node, int)
1 private void setHeadAndPropagate(Node node, int propagate) {
2 Node h = head;
3 setHead(node);//head指向自己
4 //如果还有剩余量,继续唤醒下一个邻居线程
5 if (propagate > 0 || h == null || h.waitStatus < 0) {
6 Node s = node.next;
7 if (s == null || s.isShared())
8 doReleaseShared();
9 }
10 }
此方法在setHead()的基础上多了一步,就是自己苏醒的同时,如果条件符合(比如还有剩余资源),还会去唤醒后继结点,毕竟是共享模式!
doReleaseShared()我们留着下一小节的releaseShared()里来讲。
3.3.2 小结
OK,至此,acquireShared()也要告一段落了。让我们再梳理一下它的流程:
- tryAcquireShared()尝试获取资源,成功则直接返回;
- 失败则通过doAcquireShared()进入等待队列park(),直到被unpark()/interrupt()并成功获取到资源才返回。整个等待过程也是忽略中断的。
其实跟acquire()的流程大同小异,只不过多了个自己拿到资源后,还会去唤醒后继队友的操作(这才是共享嘛)。
3.4 releaseShared()共享模式释放资源
上一小节已经把acquireShared()说完了,这一小节就来讲讲它的反操作releaseShared()吧。此方法是共享模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。下面是releaseShared()的源码:
1 public final boolean releaseShared(int arg) {
2 if (tryReleaseShared(arg)) {//尝试释放资源
3 doReleaseShared();//唤醒后继结点
4 return true;
5 }
6 return false;
7 }
此方法的流程也比较简单,一句话:释放掉资源后,唤醒后继。跟独占模式下的release()相似,但有一点稍微需要注意:独占模式下的tryRelease()在完全释放掉资源(state=0)后,才会返回true去唤醒其他线程,这主要是基于可重入的考量;而共享模式下的releaseShared()则没有这种要求,一是共享的实质--多线程可并发执行;二是共享模式基本也不会重入吧(至少我还没见过),所以自定义同步器可以根据需要决定返回值。
3.4.1 doReleaseShared()
此方法主要用于唤醒后继。下面是它的源码:
1 private void doReleaseShared() {
2 for (;;) {
3 Node h = head;
4 if (h != null && h != tail) {
5 int ws = h.waitStatus;
6 if (ws == Node.SIGNAL) {//如果头结点状态是signal,即需要唤醒后继节点
7 if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))//CAS一下如果当前状态是signal则重置为0,否则退出当前循环进入下次循环
8 continue;
9 unparkSuccessor(h);//唤醒后继
10 }
11 else if (ws == 0 &&
12 !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))//如果头结点状态是0且CAS成功状态重置为传播失败了,退出当前循环进入下次循环
13 continue;
14 }
15 if (h == head)// head发生变化
16 break;
17 }
18 }
3.5 小结
本节我们详解了独占和共享两种模式下获取-释放资源(acquire-release、acquireShared-releaseShared)的源码,相信大家都有一定认识了。值得注意的是,acquire()和acquireSahred()两种方法下,线程在等待队列中都是忽略中断的。AQS也支持响应中断的,acquireInterruptibly()/acquireSharedInterruptibly()即是,这里相应的源码跟acquire()和acquireSahred()差不多,这里就不再详解了。
四、简单应用
下面我们就以AQS源码里的Mutex为例,讲一下AQS的简单应用。
同步类自己(Mutex)则实现某个接口,对外服务。同步类在实现时一般都将自定义同步器(sync)定义为内部类,只用实现state的获取-释放方式tryAcquire-tryRelelase,至于线程的排队、等待、唤醒等,上层的AQS都已经实现好了,我们不用关心。
1 class Mutex implements Lock, java.io.Serializable { 2 // 自定义同步器 3 private static class Sync extends AbstractQueuedSynchronizer { 4 // 判断是否锁定状态 5 protected boolean isHeldExclusively() { 6 return getState() == 1; 7 } 8 9 // 尝试获取资源,立即返回。成功则返回true,否则false。 10 public boolean tryAcquire(int acquires) { 11 assert acquires == 1; // 这里限定只能为1个量 12 if (compareAndSetState(0, 1)) {//state为0才设置为1,不可重入! 13 setExclusiveOwnerThread(Thread.currentThread());//设置为当前线程独占资源 14 return true; 15 } 16 return false; 17 } 18 19 // 尝试释放资源,立即返回。成功则为true,否则false。 20 protected boolean tryRelease(int releases) { 21 assert releases == 1; // 限定为1个量 22 if (getState() == 0)//既然来释放,那肯定就是已占有状态了。只是为了保险,多层判断! 23 throw new IllegalMonitorStateException(); 24 setExclusiveOwnerThread(null); 25 setState(0);//释放资源,放弃占有状态 26 return true; 27 } 28 } 29 30 // 真正同步类的实现都依赖继承于AQS的自定义同步器! 31 private final Sync sync = new Sync(); 32 33 //lock<-->acquire。两者语义一样:获取资源,即便等待,直到成功才返回。 34 public void lock() { 35 sync.acquire(1); 36 } 37 38 //tryLock<-->tryAcquire。两者语义一样:尝试获取资源,要求立即返回。成功则为true,失败则为false。 39 public boolean tryLock() { 40 return sync.tryAcquire(1); 41 } 42 43 //unlock<-->release。两者语文一样:释放资源。 44 public void unlock() { 45 sync.release(1); 46 } 47 48 //锁是否占有状态 49 public boolean isLocked() { 50 return sync.isHeldExclusively(); 51 } 52 }
五、总结
了解了老李头的AQS,再去看JUC下的类就简单明了啦,如下:
1.独占模式:
ReentrantLock:可重入锁。state=0独占锁,或者同一线程可多次获取锁(获取+1,释放-1)。
Worker(java.util.concurrent.ThreadPoolExecutor类中的内部类)线程池类。shutdown关闭空闲工作线程,中断worker工作线程是独占的,互斥的。
2.共享模式:
Semaphore:信号量。 控制同时有多少个线程可以进入代码段。(互斥锁的拓展)
CountDownLatch:倒计时器。 初始化一个值,多线程减少这个值,直到为0,倒计时完毕,执行后续代码。
3.独占+共享模式:
ReentrantReadWriteLock:可重入读写锁。独占写+共享读,即并发读,互斥写。
公共方法 |
子类需要自定义的方法(AQS中默认返回异常,子类覆盖实现) |
子类可直接使用的方法 |
|
独占模式 |
CAS操作节点、state同步状态 compareAndSetState 设置同步状态 compareAndSetHead 设置head节点
|
protected boolean tryAcquire(int arg)获取资源 protected boolean tryRelease(int arg) 释放资源 protected boolean isHeldExclusively()该线程是否正在独占资源。 |
AbstractOwnableSynchronizer是AQS的父类,继承AQS类自然继承了AbstractOwnableSynchronizer, 方法: protected final Thread getExclusiveOwnerThread()获取当前独占线程 |
共享模式 |
protected int tryAcquireShared(int arg)获取资源 protected boolean tryReleaseShared(int arg) 释放资源 |
========参考=================
1.《The java.util.concurrent Synchronizer Framework》
2.http://singleant.iteye.com/blog/1418580
如果你觉得本文对你有点帮助的话,记得在右下角点个“推荐”哦,博主在此感谢!