摘要:
概率分布之间的距离,顾名思义,度量两组样本分布之间的距离 。 1、卡方检验 统计学上的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为 其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的 阅读全文
摘要:
接上一篇:http://www.cnblogs.com/denny402/p/7027954.html 7. 夹角余弦(Cosine) 也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 (1)在二维空间中向量A(x1,y1)与向量B( 阅读全文
摘要:
1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a 阅读全文
摘要:
谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类。 下载地址:https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip 阅读全文
摘要:
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情。tf里面提供模型保存的是tf.train.Saver()模块。 模型保存,先要创建一个Saver对象:如 在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的 阅读全文
摘要:
在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,如: 这里只能查看参数的shape和name,并没有具体的值。如果要查看参数具体的值的话,必须先初始化,即: 同理,我们也可以提取图片经过训练后的值。图片经过卷积后变成了特征,要提取这些特征,必须先把图片feed 阅读全文
摘要:
池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化。 1、tf.layers.max_pooling2d inputs: 进行池化的数据。 pool_size: 池化的核大小(pool_height, pool_width),如[3,3]. 阅读全文
摘要:
CNN中最重要的就是参数了,包括W,b。 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值。参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/in 阅读全文
摘要:
在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化。 一、旧版本(1.0以下)的卷积函数:tf.nn.conv2d 该函数定义在tensorflow/python/ops/gen_nn_ops.py。 参数: input: 一个4维Tensor(N,H,W,C). 类型必须是以 阅读全文
摘要:
tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化。 任务:花卉分类 版本:tensorflow 1.0 数据:http://download.tensorflow.org/example_image 阅读全文