矩阵相乘以及矩阵基础知识

总忘,记一下




【向量的定义】
向量可以形象化为一个有长度的箭头,或是一个有序的数组,它定义在一组基坐标系中,满足可加性以及缩放性
【坐标系及基向量】

每当我们用数字描述向量时,他都依赖于我们正在使用的基

【张成空间】


矩阵的基本性质

矩阵与向量:静态的来说,矩阵可以看作是向量的集合,向量可以看做一列的矩阵,以运动学的角度来说,矩阵其实描述了向量的运动,即,一个向量线性变换到另一个向量的运动过程,就是矩阵

矩阵的基本运算

矩阵与向量的相乘,就是基向量的变换后再线性组合,也就是说矩阵描述的就是基向量变换的这一过程:
**基向量
向(a,c)方向运动并最终落在(a,c)点;另一个基向量同理)
**

而我们常用的计算方法,实际上做的事对应坐标值缩放再相加,相当于直接跳过变换的过程而直接给出变换的结果。
(在MIT的线性代数公开课里,最后一个等号做的其实就是向量的点积,在后面会讲到;而第一个等号,是将x、y看作是缩放的系数)

这里有个特殊情况,就是矩阵若是线性相关,则该矩阵描述的是将空间降维。

因此,线性变换是操纵空间的一种手段。

二维坐标系中,如果i,j是这个坐标系的基底向量,那么这个坐标系中的所有向量都可以用这两个基底来表示

线性变换表述就是新坐标系的基底发生了改变

posted @ 2023-01-17 14:48  你的代码能改变世界吗  阅读(103)  评论(0编辑  收藏  举报