import pandas as pd
import numpy as np
index = pd.date_range('1/1/2000', periods=9, freq='T')
series = pd.Series(range(9), index=index)
print(series)
print(series.resample('3T').sum())
print(series.resample('3T', label='right').sum())
print(series.resample('3T', label='right', closed='right').sum())
print(series.resample('30S').asfreq()[0:5])
print(series.resample('30S').pad()[0:5])
print(series.resample('30S').bfill()[:5])
def customer_resampler(array_like):
return np.sum(array_like) + 5
print(series.resample('3T').apply(customer_resampler))
df = pd.read_csv('./mt.csv', index_col="date", parse_dates=["date"])
df.drop(labels="Unnamed: 0", axis=1, inplace=True)
print(df['2018'])
print(df['2018':'2021'])
print(df['2018-01':'2018-05'])
print(df['2018-05-23':'2018-09-30'])
print(df.resample('W').sum())
print(df.resample('M').sum())
print(df.resample('Q').sum())
print(df.resample('QS').sum())
print(df.resample('A').sum())
print(df.open.resample('A').sum().fillna(0))
print(df[['open', 'close']].resample('A').sum().fillna(0))
print(df['2018-05':'2018-09'].resample('W').sum().fillna(0))
times = pd.date_range('20180101', periods=30)
ts = pd.Series(np.arange(1, 31), index=times)
print(ts)
ts_7d = ts.resample('7D').sum()
print(ts_7d)
ts_7d = ts.resample('7D', closed='right', label='left').sum()
ts_7d = ts.resample('7D', closed='right', label='right').sum()
print(ts_7d)
ts_7h_asfreq = ts.resample('7H').asfreq()[-4:]
print(ts_7h_asfreq)
ts_7h_asfreq = ts.resample('7H').asfreq().ffill()[-4:]
print(ts_7h_asfreq)
ts_7h_asfreq = ts.resample('7H').bfill()[-4:]
print(ts_7h_asfreq)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?